Наименьшее значение функции примеры решения. Наибольшее и наименьшее значение функции

Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции .

Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция непрерывна на отрезке если:

1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева .

Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:

Функция непрерывна в точке справа , если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева , если определена в данной точке и её левосторонний предел равен значению в этой точке:

Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём . В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)

Согласно второй теореме Вейерштрасса , непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .

Число также называют максимальным значением функции на отрезке и обозначают через , а число – минимальным значением функции на отрезке с пометкой .

В нашем случае:

Примечание : в теории распространены записи .

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно! Как уже заострялось внимание в статье об экстремумах функции , наибольшее значение функции и наименьшее значение функции НЕ ТО ЖЕ САМОЕ , что максимум функции и минимум функции . Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!

Более того, решение чисто аналитическое, следовательно, чертежа делать не надо !

Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

1) Находим значения функции в критических точках , которые принадлежат данному отрезку .

Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует , что там минимальное или максимальное значение. Демонстрационная функция достигает максимума и волей судьбы это же число является наибольшим значением функции на отрезке . Но, понятно, такое совпадение имеет место далеко не всегда.

Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.

2) Вычисляем значения функции на концах отрезка.

3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

Садимся на берег синего моря и бьём пятками по мелководью:

Пример 1

Найти наибольшее и наименьшее значения функции на отрезке

Решение :
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Вычислим значение функции во второй критической точке:

2) Вычислим значения функции на концах отрезка:

3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :

Вот теперь всё понятно.

Ответ :

Дробно-рациональный экземпляр для самостоятельного решения:

Пример 6

Найти максимальное и минимальное значения функции на отрезке

Процесс поиска наименьшего и наибольшего значения функции на отрезке напоминает увлекательный облёт объекта (графика функции) на вертолёте с обстрелом из дальнобойной пушки определённых точек и выбором из этих точек совсем особенных точек для контрольных выстрелов. Точки выбираются определённым образом и по определённым правилам. По каким правилам? Об этом мы далее и поговорим.

Если функция y = f (x ) непрерывна на отрезке [a , b ] , то она достигает на этом отрезке наименьшего и наибольшего значений . Это может произойти либо в точках экстремума , либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции , непрерывной на отрезке [a , b ] , нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.

Пусть, например, требуется определить наибольшее значение функции f (x ) на отрезке [a , b ] . Для этого следует найти все её критические точки, лежащие на [a , b ] .

Критической точкой называется точка, в которой функция определена , а её производная либо равна нулю, либо не существует. Затем следует вычислить значения функции в критических точках. И, наконец, следует сравнить между собой по величине значения функции в критических точках и на концах отрезка (f (a ) и f (b ) ). Наибольшее из этих чисел и будет наибольшим значением функции на отрезке [a , b ] .

Аналогично решаются и задачи на нахождение наименьших значений функции .

Ищем наименьшее и наибольшее значения функции вместе

Пример 1. Найти наименьшее и наибольшее значения функции на отрезке [-1, 2] .

Решение. Находим производную данной функции . Приравняем производную нулю () и получим две критические точки: и . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке достаточно вычислить её значения на концах отрезка и в точке , так как точка не принадлежит отрезку [-1, 2] . Эти значения функции - следующие: , , . Из этого следует, что наименьшее значение функции (на графике ниже обозначено красным), равное -7, достигается на правом конце отрезка - в точке , а наибольшее (тоже красное на графике), равно 9, - в критической точке .

Если функция непрерывна в некотором промежутке и этот промежуток не является отрезком (а является, например, интервалом; разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок), то среди значений функции может и не быть наименьшего и наибольшего. Так, например, функция, изображённая на рисунке ниже, непрерывна на ]-∞, +∞[ и не имеет наибольшего значения.

Однако для любого промежутка (закрытого, открытого или бесконечного) справедливо следующее свойство непрерывных функций.

Пример 4. Найти наименьшее и наибольшее значения функции на отрезке [-1, 3] .

Решение. Находим производную данной функции как производную частного:

.

Приравниваем производную нулю, что даёт нам одну критическую точку: . Она принадлежит отрезку [-1, 3] . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Сравниваем эти значения. Вывод: , равного -5/13, в точке и наибольшего значения , равного 1, в точке .

Продолжаем искать наименьшее и наибольшее значения функции вместе

Есть преподаватели, которые по теме нахождения наименьшего и наибольшего значений функции не дают студентам для решения примеры сложнее только что рассмотренных, то есть таких, в которых функция - многочлен либо дробь, числитель и знаменатель которой - многочлены. Но мы не ограничимся такими примерами, поскольку среди преподавателей бывают любители заставить студентов думать по полной (таблице производных). Поэтому в ход пойдут логарифм и тригонометрическая функция.

Пример 6. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции как производную произведения :

Приравниваем производную нулю, что даёт одну критическую точку: . Она принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Результат всех действий: функция достигает наименьшего значения , равного 0, в точке и в точке и наибольшего значения , равного e ² , в точке .

Пример 7. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции:

Приравниваем производную нулю:

Единственная критическая точку принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Вывод: функция достигает наименьшего значения , равного , в точке и наибольшего значения , равного , в точке .

В прикладных экстремальных задачах нахождение наименьшего (наибольшего) значений функции, как правило, сводится к нахождению минимума (максимума). Но больший практический интерес имеют не сами минимумы или максимумы, а те значения аргумента, при которых они достигаются. При решении прикладных задач возникает дополнительная трудность - составление функций, описывающих рассматриваемое явление или процесс.

Пример 8. Резервуар ёмкостью 4 , имеющий форму параллелепипеда с квадратным основанием и открытый сверху, нужно вылудить оловом. Каковы должны быть размеры резервуара, чтобы на его покрытие ушло наименьшее количество материала?

Решение. Пусть x - сторона основания, h - высота резервуара, S - площадь его поверхности без крышки, V - его объём. Площадь поверхности резервуара выражается формулой , т.е. является функцией двух переменных . Чтобы выразить S как функцию одной переменной, воспользуемся тем, что , откуда . Подставив найденное выражение h в формулу для S :

Исследуем эту функцию на экстремум. Она определена и дифференцируема всюду в ]0, +∞[ , причём

.

Приравниваем производную нулю () и находим критическую точку . Кроме того, при производная не существует, но это значение не входит в область определения и поэтому не может быть точкой экстремума. Итак, - единственная критическая точка. Проверим её на наличие экстремума, используя второй достаточный признак. Найдём вторую производную . При вторая производная больше нуля (). Значит, при функция достигает минимума . Поскольку этот минимум - единственный экстремум данной функции, он и является её наименьшим значением . Итак, сторона основания резервуара должна быть равна 2 м, а его высота .

Пример 9. Из пункта A , находящегося на линии железной дороги, в пункт С , отстоящий от неё на расстоянии l , должны переправляться грузы. Стоимость провоза весовой единицы на единицу расстояния по железной дороге равна , а по шоссе она равна . К какой точке М линии железной дороги следует провести шоссе, чтобы транспортировка груза из А в С была наиболее экономичной (участок АВ железной дороги предполагается прямолинейным)?

Пусть функция $z=f(x,y)$ определена и непрерывна в некоторой ограниченной замкнутой области $D$. Пусть в этой области заданная функция имеет конечные частные производные первого порядка (за исключением, быть может, конечного количества точек). Чтобы найти наибольшее и наименьшее значения функции двух переменных в данной замкнутой области требуется выполнить три шага простого алгоритма.

Алгоритм поиска наибольшего и наименьшего значений функции $z=f(x,y)$ в замкнутой области $D$.

  1. Найти критические точки функции $z=f(x,y)$, принадлежащие области $D$. Вычислить значения функции в критических точках.
  2. Исследовать поведение функции $z=f(x,y)$ на границе области $D$, найдя точки возможного наибольшего и наименьшего значений. Вычислить значения функции в полученных точках.
  3. Из значений функции, полученных в предыдущих двух пунктах, выбрать наибольшее и наименьшее.

Что такое критические точки? показать\скрыть

Под критическими точками подразумевают такие точки, в которых обе частные производные первого порядка равны нулю (т.е. $\frac{\partial z}{\partial x}=0$ и $\frac{\partial z}{\partial y}=0$) или хотя бы одна частная производная не существует.

Часто точки, в которых частные производные первого порядка равны нулю, именуют стационарными точками . Таким образом, стационарные точки - есть подмножество критических точек.

Пример №1

Найти наибольшее и наименьшее значения функции $z=x^2+2xy-y^2-4x$ в замкнутой области, ограниченной линиями $x=3$, $y=0$ и $y=x+1$.

Будем следовать указанному выше , но для начала разберёмся с чертежом заданной области, которую обозначим буквой $D$. Нам заданы уравнения трёх прямых, кои эту область ограничивают. Прямая $x=3$ проходит через точку $(3;0)$ параллельно оси ординат (оси Oy). Прямая $y=0$ - это уравнение оси абсцисс (оси Ox). Ну, а для построения прямой $y=x+1$ найдём две точки, через которые и проведём данную прямую. Можно, конечно, подставить вместо $x$ парочку произвольных значений. Например, подставляя $x=10$, получим: $y=x+1=10+1=11$. Мы нашли точку $(10;11)$, лежащую на прямой $y=x+1$. Однако лучше отыщем те точки, в которых прямая $y=x+1$ пересекается с линиями $x=3$ и $y=0$. Почему это лучше? Потому, что мы одним выстрелом уложим пару зайцев: получим две точки для построения прямой $y=x+1$ и заодно выясним, в каких точках эта прямая пересекает иные линии, ограничивающие заданную область. Прямая $y=x+1$ пересекает прямую $x=3$ в точке $(3;4)$, а прямую $y=0$ - в точке $(-1;0)$. Дабы не загромождать ход решения вспомогательными пояснениями, то вопрос о получении этих двух точек вынесу в примечание.

Как были получены точки $(3;4)$ и $(-1;0)$? показать\скрыть

Начнём с точки пересечения прямых $y=x+1$ и $x=3$. Координаты искомой точки принадлежат и первой, и второй прямой, поэтому для нахождения неизвестных координат нужно решить систему уравнений:

$$ \left \{ \begin{aligned} & y=x+1;\\ & x=3. \end{aligned} \right. $$

Решение такой системы тривиально: подставляя $x=3$ в первое уравнение будем иметь: $y=3+1=4$. Точка $(3;4)$ и есть искомая точка пересечения прямых $y=x+1$ и $x=3$.

Теперь отыщем точку пересечения прямых $y=x+1$ и $y=0$. Вновь составим и решим систему уравнений:

$$ \left \{ \begin{aligned} & y=x+1;\\ & y=0. \end{aligned} \right. $$

Подставляя $y=0$ в первое уравнение, получим: $0=x+1$, $x=-1$. Точка $(-1;0)$ и есть искомая точка пересечения прямых $y=x+1$ и $y=0$ (оси абсцисс).

Всё готово для построения чертежа, который будет иметь такой вид:

Вопрос примечания кажется очевидным, ведь всё видно по рисунку. Однако стоит помнить, что рисунок не может служить доказательством. Рисунок - лишь иллюстрация для наглядности.

Наша область была задана с помощью уравнений прямых, которые её ограничивают. Очевидно, что эти прямые определяют треугольник, не так ли? Или не совсем очевидно? А может, нам задана иная область, ограниченная теми же прямыми:

Конечно, в условии сказано, что область замкнута, поэтому показанный рисунок неверен. Но чтобы избегать подобных двусмысленностей, области лучше задавать неравенствами. Нас интересует часть плоскости, расположенная под прямой $y=x+1$? Ок, значит, $y ≤ x+1$. Наша область должна располагаться над прямой $y=0$? Отлично, значит $y ≥ 0$. Кстати, два последних неравенства легко объединяются в одно: $0 ≤ y ≤ x+1$.

$$ \left \{ \begin{aligned} & 0 ≤ y ≤ x+1;\\ & x ≤ 3. \end{aligned} \right. $$

Эти неравенства и задают область $D$, причём задают её однозначно, не допуская никаких двусмысленностей. Но как это поможет нам в том вопросе, что указан в начале примечания? Ещё как поможет:) Нам нужно проверить, принадлежит ли точка $M_1(1;1)$ области $D$. Подставим $x=1$ и $y=1$ в систему неравенств, которые эту область определяют. Если оба неравенства будут выполнены, то точка лежит внутри области. Если хотя бы одно из неравенств будет не выполнено, то точка области не принадлежит. Итак:

$$ \left \{ \begin{aligned} & 0 ≤ 1 ≤ 1+1;\\ & 1 ≤ 3. \end{aligned} \right. \;\; \left \{ \begin{aligned} & 0 ≤ 1 ≤ 2;\\ & 1 ≤ 3. \end{aligned} \right. $$

Оба неравенства справедливы. Точка $M_1(1;1)$ приналежит области $D$.

Теперь настал черёд исследовать поведение функции на границе области, т.е. переходим ко . Начнём с прямой $y=0$.

Прямая $y=0$ (ось абсцисс) ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставим $y=0$ в заданную функцию $z(x,y)=x^2+2xy-y^2-4x$. Полученную в результате подстановки функцию одной переменной $x$ обозначим как $f_1(x)$:

$$ f_1(x)=z(x,0)=x^2+2x\cdot 0-0^2-4x=x^2-4x. $$

Теперь для функции $f_1(x)$ нужно найти наибольшее и наименьшее значения на отрезке $-1 ≤ x ≤ 3$. Отыщем производную этой функции и приравняем её к нулю:

$$ f_{1}^{"}(x)=2x-4;\\ 2x-4=0; \; x=2. $$

Значение $x=2$ принадлежит отрезку $-1 ≤ x ≤ 3$, поэтому к списку точек добавим ещё и $M_2(2;0)$. Кроме того, вычислим значения функции $z$ на концах отрезка $-1 ≤ x ≤ 3$, т.е. в точках $M_3(-1;0)$ и $M_4(3;0)$. Кстати, если бы точка $M_2$ не принадлежала рассматриваемому отрезку, то, разумеется, значение функции $z$ в ней вычислять не было бы надобности.

Итак, вычислим значения функции $z$ в точках $M_2$, $M_3$, $M_4$. Можно, конечно, подставлять координаты данных точек в исходное выражение $z=x^2+2xy-y^2-4x$. Например, для точки $M_2$ получим:

$$z_2=z(M_2)=2^2+2\cdot 2\cdot 0-0^2-4\cdot 2=-4.$$

Однако вычисления можно немного упростить. Для этого стоит вспомнить, что на отрезке $M_3M_4$ имеем $z(x,y)=f_1(x)$. Распишу это подробно:

\begin{aligned} & z_2=z(M_2)=z(2,0)=f_1(2)=2^2-4\cdot 2=-4;\\ & z_3=z(M_3)=z(-1,0)=f_1(-1)=(-1)^2-4\cdot (-1)=5;\\ & z_4=z(M_4)=z(3,0)=f_1(3)=3^2-4\cdot 3=-3. \end{aligned}

Разумеется, что в столь подробных записях обычно нет нужды, и все вычисления в дальнейшем станем записывать покороче:

$$z_2=f_1(2)=2^2-4\cdot 2=-4;\; z_3=f_1(-1)=(-1)^2-4\cdot (-1)=5;\; z_4=f_1(3)=3^2-4\cdot 3=-3.$$

Теперь обратимся к прямой $x=3$. Эта прямая ограничивает область $D$ при условии $0 ≤ y ≤ 4$. Подставим $x=3$ в заданную функцию $z$. В результате такой подстановки мы получим функцию $f_2(y)$:

$$ f_2(y)=z(3,y)=3^2+2\cdot 3\cdot y-y^2-4\cdot 3=-y^2+6y-3. $$

Для функции $f_2(y)$ нужно найти наибольшее и наименьшее значения на отрезке $0 ≤ y ≤ 4$. Отыщем производную этой функции и приравняем её к нулю:

$$ f_{2}^{"}(y)=-2y+6;\\ -2y+6=0; \; y=3. $$

Значение $y=3$ принадлежит отрезку $0 ≤ y ≤ 4$, поэтому к найденным ранее точкам добавим ещё и $M_5(3;3)$. Кроме того, нужно вычислить значение функции $z$ в точках на концах отрезка $0 ≤ y ≤ 4$, т.е. в точках $M_4(3;0)$ и $M_6(3;4)$. В точке $M_4(3;0)$ мы уже вычисляли значение $z$. Вычислим значение функции $z$ в точках $M_5$ и $M_6$. Напомню, что на отрезке $M_4M_6$ имеем $z(x,y)=f_2(y)$, поэтому:

\begin{aligned} & z_5=f_2(3)=-3^2+6\cdot 3-3=6; & z_6=f_2(4)=-4^2+6\cdot 4-3=5. \end{aligned}

И, наконец, рассмотрим последнюю границу области $D$, т.е. прямую $y=x+1$. Эта прямая ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставляя $y=x+1$ в функцию $z$, будем иметь:

$$ f_3(x)=z(x,x+1)=x^2+2x\cdot (x+1)-(x+1)^2-4x=2x^2-4x-1. $$

Вновь мы получили функцию одной переменной $x$. И вновь нужно найти наибольшее и наименьшее значения этой функции на отрезке $-1 ≤ x ≤ 3$. Отыщем производную функции $f_{3}(x)$ и приравняем её к нулю:

$$ f_{3}^{"}(x)=4x-4;\\ 4x-4=0; \; x=1. $$

Значение $x=1$ принадлежит отрезку $-1 ≤ x ≤ 3$. Если $x=1$, то $y=x+1=2$. Добавим к списку точек ещё и $M_7(1;2)$ и выясним, чему равно значение функции $z$ в этой точке. Точки на концах отрезка $-1 ≤ x ≤ 3$, т.е. точки $M_3(-1;0)$ и $M_6(3;4)$, были рассмотрены ранее, значение функции в них мы уже находили.

$$z_7=f_3(1)=2\cdot 1^2-4\cdot 1-1=-3.$$

Второй шаг решения закончен. Мы получили семь значений:

$$z_1=-2;\;z_2=-4;\;z_3=5;\;z_4=-3;\;z_5=6;\;z_6=5;\;z_7=-3.$$

Обратимся к . Выбирая наибольшее и наименьшее значения из тех чисел, что были получены в третьем пункте, будем иметь:

$$z_{min}=-4; \; z_{max}=6.$$

Задача решена, осталось лишь записать ответ.

Ответ : $z_{min}=-4; \; z_{max}=6$.

Пример №2

Найти наибольшее и наименьшее значения функции $z=x^2+y^2-12x+16y$ в области $x^2+y^2 ≤ 25$.

Сначала построим чертёж. Уравнение $x^2+y^2=25$ (это граничная линия заданной области) определяет окружность с центром в начале координат (т.е. в точке $(0;0)$) и радиусом 5. Неравенству $x^2+y^2 ≤ 25$ удовлетворяют все точки внутри и на упомянутой окружности.

Будем действовать по . Найдем частные производные и выясним критические точки.

$$ \frac{\partial z}{\partial x}=2x-12; \frac{\partial z}{\partial y}=2y+16. $$

Точек, в которых найденные частные производные не существуют, нет. Выясним, в каких точках обе частные производные одновременно равны нулю, т.е. найдём стационарные точки.

$$ \left \{ \begin{aligned} & 2x-12=0;\\ & 2y+16=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x=6;\\ & y=-8. \end{aligned} \right. $$

Мы получили стационарную точку $(6;-8)$. Однако найденная точка не принадлежит области $D$. Это легко показать, даже не прибегая к помощи рисунка. Проверим, выполняется ли неравенство $x^2+y^2 ≤ 25$, которое определяет нашу область $D$. Если $x=6$, $y=-8$, то $x^2+y^2=36+64=100$, т.е. неравенство $x^2+y^2 ≤ 25$ не выполнено. Вывод: точка $(6;-8)$ не принадлежит области $D$.

Итак, внутри области $D$ нет критических точек. Переходим дальше, ко . Нам нужно исследовать поведение функции на границе заданной области, т.е. на окружности $x^2+y^2=25$. Можно, конечно, выразить $y$ через $x$, а потом подставить полученное выражение в нашу функцию $z$. Из уравнения окружности получим: $y=\sqrt{25-x^2}$ или $y=-\sqrt{25-x^2}$. Подставляя, например, $y=\sqrt{25-x^2}$ в заданную функцию, будем иметь:

$$ z=x^2+y^2-12x+16y=x^2+25-x^2-12x+16\sqrt{25-x^2}=25-12x+16\sqrt{25-x^2}; \;\; -5≤ x ≤ 5. $$

Дальнейшее решение будет полностью идентично исследованию поведения функции на границе области в предыдущем примере №1. Однако мне кажется более разумным в этой ситуации применить метод Лагранжа . Нас будет интересовать лишь первая часть этого метода. После применения первой части метода Лагранжа мы получим точки, в которых и исследуем функцию $z$ на предмет минимального и максимального значений.

Составляем функцию Лагранжа:

$$ F=z(x,y)+\lambda\cdot(x^2+y^2-25)=x^2+y^2-12x+16y+\lambda\cdot (x^2+y^2-25). $$

Находим частные производные функции Лагранжа и составляем соответствующую систему уравнений:

$$ F_{x}^{"}=2x-12+2\lambda x; \;\; F_{y}^{"}=2y+16+2\lambda y.\\ \left \{ \begin{aligned} & 2x-12+2\lambda x=0;\\ & 2y+16+2\lambda y=0;\\ & x^2+y^2-25=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x+\lambda x=6;\\ & y+\lambda y=-8;\\ & x^2+y^2=25. \end{aligned} \right. $$

Для решения этой системы давайте сразу укажем, что $\lambda\neq -1$. Почему $\lambda\neq -1$? Попробуем подставить $\lambda=-1$ в первое уравнение:

$$ x+(-1)\cdot x=6; \; x-x=6; \; 0=6. $$

Полученное противоречие $0=6$ говорит о том, что значение $\lambda=-1$ недопустимо. Вывод: $\lambda\neq -1$. Выразим $x$ и $y$ через $\lambda$:

\begin{aligned} & x+\lambda x=6;\; x(1+\lambda)=6;\; x=\frac{6}{1+\lambda}. \\ & y+\lambda y=-8;\; y(1+\lambda)=-8;\; y=\frac{-8}{1+\lambda}. \end{aligned}

Полагаю, что тут становится очевидным, зачем мы специально оговаривали условие $\lambda\neq -1$. Это было сделано, чтобы без помех поместить выражение $1+\lambda$ в знаменатели. Т.е., чтобы быть уверенным, что знаменатель $1+\lambda\neq 0$.

Подставим полученные выражения для $x$ и $y$ в третье уравнение системы, т.е. в $x^2+y^2=25$:

$$ \left(\frac{6}{1+\lambda} \right)^2+\left(\frac{-8}{1+\lambda} \right)^2=25;\\ \frac{36}{(1+\lambda)^2}+\frac{64}{(1+\lambda)^2}=25;\\ \frac{100}{(1+\lambda)^2}=25; \; (1+\lambda)^2=4. $$

Из полученного равенства следует, что $1+\lambda=2$ или $1+\lambda=-2$. Отсюда имеем два значения параметра $\lambda$, а именно: $\lambda_1=1$, $\lambda_2=-3$. Соответственно, получим и две пары значений $x$ и $y$:

\begin{aligned} & x_1=\frac{6}{1+\lambda_1}=\frac{6}{2}=3; \; y_1=\frac{-8}{1+\lambda_1}=\frac{-8}{2}=-4. \\ & x_2=\frac{6}{1+\lambda_2}=\frac{6}{-2}=-3; \; y_2=\frac{-8}{1+\lambda_2}=\frac{-8}{-2}=4. \end{aligned}

Итак, мы получили две точки возможного условного экстремума, т.е. $M_1(3;-4)$ и $M_2(-3;4)$. Найдём значения функции $z$ в точках $M_1$ и $M_2$:

\begin{aligned} & z_1=z(M_1)=3^2+(-4)^2-12\cdot 3+16\cdot (-4)=-75; \\ & z_2=z(M_2)=(-3)^2+4^2-12\cdot(-3)+16\cdot 4=125. \end{aligned}

На следует выбрать наибольшее и наименьшее значения из тех, что мы получили на первом и втором шагах. Но в данном случае выбор невелик:) Имеем:

$$ z_{min}=-75; \; z_{max}=125. $$

Ответ : $z_{min}=-75; \; z_{max}=125$.

Часто в физике и математике требуется найти наименьшее значение функции. Как это сделать, мы сейчас расскажем.

Как находить наименьшее значение функции: инструкция

  1. Чтобы вычислить наименьшее значение непрерывной функции на заданном отрезке, нужно следовать такому алгоритму:
  2. Найти производную от функции.
  3. Найти на заданном отрезке точки, в которых производная равна нулю, а также все критические точки. Затем выяснить значения функции в этих точках, то есть решить уравнение, где x равно нулю. Выяснить, какое из значений наименьшее.
  4. Выявить, какое значение функция имеет на конечных точках. Определить наименьшее значение функции в этих точках.
  5. Сравнить полученные данные с наименьшим значением. Меньшее из полученных чисел и будет являться наименьшим значением функции.

Заметьте, что в том случае, если функция на отрезке не имеет наименьших точек, это значит, что на данном отрезке она возрастает или убывает. Следовательно, наименьшее значение следует вычислять на конечных отрезках функции.

Во всех остальных случаях значение функции вычисляется по заданному алгоритму. В каждом пункте алгоритма вам нужно будет решить простое линейное уравнение с одним корнем. Решайте уравнение с помощью рисунка, чтобы избежать ошибок.

Как находить наименьшее значение функции на полуоткрытом отрезке? На полуоткрытом или открытом периоде функции наименьшее значение следует находить следующим образом. На конечных точках значения функции вычислите односторонний предел функции. Другими словами, решите уравнение, в котором стремящиеся точки заданы значением a+0 и b+0, где a и b - названия критических точек.

Теперь Вы знаете, как найти наименьшее значение функции. Главное - все вычисления делать правильно, точно и без ошибок.


Постановка задачи 2:

Дана функция , определенная и непрерывная на некотором промежутке . Требуется найти наибольшее (наименьшее) значение функции на этом промежутке.

Теоретические основы.
Теорема (Вторая теорема Вейерштрасса):

Если функция определена и непрерывна в замкнутом промежутке , то она достигает в этом промежутке своих наибольшего и наименьшего значений.

Функция может достигать своих наибольших и наименьших значений либо на внутренних точках промежутка, либо на его границах. Проиллюстрируем все возможные варианты.

Пояснение:
1) Функция достигает своего наибольшего значения на левой границе промежутка в точке , а своего наименьшего значения на правой границе промежутка в точке .
2) Функция достигает своего наибольшего значения в точке (это точка максимума) , а своего наименьшего значения на правой границе промежутка в точке .
3) Функция достигает своего наибольшего значения на левой границе промежутка в точке , а своего наименьшего значения в точке (это точка минимума).
4) Функция постоянна на промежутке, т.е. она достигает своего минимального и максимального значения в любой точке промежутка, причем минимальное и максимальное значения равны между собой.
5) Функция достигает своего наибольшего значения в точке , а своего наименьшего значения точке (несмотря на то, что функция имеет на этом промежутке как максимум, так и минимум).
6) Функция достигает своего наибольшего значения в точке (это точка максимума), а своего наименьшего значения в точке (это точка минимума).
Замечание:

«Максимум» и «максимальное значение» — разные вещи. Это следует из определения максимума и интуитивного понимания словосочетания «максимальное значение».

Алгоритм решения задачи 2.



4) Выбрать из полученных значений наибольшее (наименьшее) и записать ответ.

Пример 4:

Определить наибольшее и наименьшее значение функции на отрезке .
Решение:
1) Найти производную функции .

2) Найти стационарные точки (и точки, подозрительные на экстремум), решив уравнение . Обратить внимание на точки, в которых не существует двусторонней конечной производной.

3) Вычислить значения функции в стационарных точках и на границах интервала.



4) Выбрать из полученных значений наибольшее (наименьшее) и записать ответ.

Функция на этом отрезке достигает своего наибольшего значения в точке с координатами .

Функция на этом отрезке достигает своего наименьшего значения в точке с координатами .

В правильность вычислений можно убедиться, взглянув на график исследуемой функции.


Замечание: Наибольшего значения функция достигает в точке максимума, а наименьшего – на границе отрезка.

Частный случай.

Предположим, требуется найти максимально и минимальное значение некоторой функции на отрезке. После выполнение первого пункта алгоритма, т.е. вычисления производной, становится ясно, что, например, она принимает только отрицательные значения на всем рассматриваемом отрезке. Помним, что если производная отрицательна, то функция убывает. Получили, что на всем отрезке функция убывает. Эта ситуация отображена на графике № 1 в начале статьи.

На отрезке функция убывает, т.е. точек экстремумов у нее нет. Из картинки видно, что наименьшее значение функция примет на правой границе отрезка, а наибольшее значение — на левой. если же производная на отрезке всюду положительна, то функция возрастает. Наименьшее значение — на левой границе отрезка, наибольшее — на правой.