Устройство и принцип работы газоразрядной лампы. Обзор газоразрядных лампах, область применения Сферы применения ГРЛ

Газоразрядная лампа – осветительный прибор, принцип действия базируется на горении дуги ионизированного газа. Это обширное семейство, в начале XXI века захватившее в мире едва ли не три четверти сегмента иллюминации. Сюда входят популярные люминесцентные лампы дневного света, лампы ДРЛ. Ещё до внедрения в обиход осветительные устройства, работающие за счёт газового разряда, встречаются в романе Жюля Верна «Путешествие к центру Земли» (1864 год).

История развития электростатической ионизации газов

Принято считать годом рождения газоразрядных ламп 1675. Однажды ночью французский учёный Жан-Феликс Пикар заметил свечение ртутного барометра, когда переносил его из обсерватории в порт святого Майкла. Чтобы читатели представили явление, нужно учесть особенности конструкции. В ртутном барометре имеется трубка, запаянная с конца. Вдобавок наличествует чаша. Оба предмета заполнены металлической ртутью.

Для определения давления трубку резко переворачивают и опускают в чашу. Тогда ртуть под действием земного тяготения стекает вниз, образуя выше себя вакуум. В результате запаянный конец трубки остаётся полым, и протяжённость пустого пространства зависит от атмосферного давления, которое, действуя на ртуть в чаше, призвано уравновесить силу тяжести.

При транспортировке барометра Пикар спешил и сильно растряс прибор. В результате произошла электризация стекла трением о ртуть, и статический заряд вызвал ионизацию металлических паров. Процесс сильно облегчался, благодаря созданному вакууму. Пары ртути и сегодня используются в отдельных газоразрядных источниках света. К примеру, ультрафиолетовая составляющая свечения активизирует люминофор лампы дневного света.

Пикар не смог объяснить обнаруженного явления, но немедленно доложил о произошедшем в научных кругах. Позднее изучением занялся известный швейцарский математик Иоганн Бернулли. Ему задача оказалась также не по зубам, но сей учёный муж активно практиковал опыт со свечением, дал представление французской академии наук. В 1700 году на демонстрации явление лицезрел английский механик, по совместительству учёный, Фрэнсис Хоксби. На базе Королевского научного общества Британии Хоксби принимается активно ставить опыты.

За основу решающего эксперимента Хоксби берет модель электростатического генератора Герике (1660 год). По описаниям машина представляла солидных размеров шар из серы, вращающийся на железном стержне. Трением о ладони оператора объект приобретал при вращении значительный заряд. Дальнейший ход мыслей Хоксби понятен. В инструкции Герике фигурировало предложение залить серу в стеклянный шар, потом разбить. Английский учёный пропустил указанный шаг. К сожалению, неизвестно, имели ли ранние работы (к примеру, трактат Гильберта 1600 года) представление об электризации стекла, но Хоксби выдвинул соответствующее предположение.

В результате экспериментальная установка содержала вместо серного шара стеклянный с каплями ртути на дне, а внутри по возможности создали вакуум. При вращении сферы на железном стержне и электризации путём трения ладонями наблюдалось свечение, чтобы читать книгу в непосредственной близости. В 1705 году английское научное общество продемонстрировало первую газоразрядную лампу. Предоставлялось верное объяснение, что к обнаруженному явлению причастны пары ртути. Потом – ход работ замер на целый век. Не находилось практического применения вновь открытому явлению.

Первые газоразрядные лампы

Нельзя сказать, чтобы XVIII век прошёл бесполезно для исследований в сфере электричества, несмотря на фразу, оброненную выше. Значимыми считаются работы Дюфе, в 1733 году предположившего наличие двух родов зарядов с целью теоретического обоснования наблюдаемого явления. Он их назвал смоляными и стеклянными. Речь идёт об объяснении феномена, рассмотренного Гильбертом в 1600 году:

  1. Наэлектризованный шар притягивает тела.
  2. Соприкоснувшись с шаром, тела начинают от предмета отталкиваться.

В понимании Дюфе объект приобретал заряд аналогичного знака при соприкосновении. Чем объясняется рассмотренное явление. Но истинный прогресс в науке начался, когда государства отменяли наказание за занятие колдовством. В результате на свет появилась Лейденская банка, а Бенджамин Франклин доказал электрическую природу молнии, Вольта изобрёл первый электрохимический источник энергии. В 1729 году произошло революционное открытие, ставшее основой для прочих: Стивен Грей додумался собрать проводники воедино и получил первую в мире электрическую цепь. С тех пор ток стали передавать на расстояние.

Изобретённая в 1746 году Вильямом Ватсоном электрическая машина сплавляла заряд по шёлковым шнурам, что позволило Жану-Антуану Нолле продемонстрировать эффектную дугу в среде разряженного газа. В указанное Готфрид Груммерт высказал предположение, что подобное освещение подойдёт для использования в шахтах и местах, где открытое пламя повышает вероятность взрыва. Иоганн Винклер заметил, что неплохо вместо шаров использовать длинные колбы, согнутые по форме букв алфавита, предвосхитив появление на свет трубок Гейслера и экрана телевизора.

Чуть позднее, в 1752 году, Ватсон частично реализовал перечисленные задумки (первый дисплей запатентован в 1893 году). К примеру, демонстрируя опыт с горением дуги в трубке длиной 32 дюйма. Благодаря столь блистательным открытиям, в 1802 году произошло сразу два значимых для рассматриваемой темы события:

  • Англичанин Хампфри Дэви открыл явление свечения накаливаемой электричеством платиновой проволоки.
  • Наш соотечественник, В. Петров при помощи вольтова столба, состоящего из 4200 (по другим данным – 2100) пар медных и цинковых пластин. Для сравнения – источник энергии сэра Хампфри Дэви показывал вдвое меньшую мощность (2000 пластин).

Достижения Петрова оказались забыты под влиянием событий Отечественной войны 1812 года и в силу российского наплевательства. В Англии к электричеству подошли серьёзно. Заслуга Хампфри Дэви немалая. Он, будучи химиком, повторяя опыты зарубежного коллеги, начал экспериментировать с различными газовыми средами. Конечно, член Королевского научного общества был знаком с опытами Фрэнсиса Хоксби и захотел проверить, не стало ли новое открытие повторением ранних попыток создать искусственные источники света.

Эти эксперименты привели к открытию линейных спектров газовых разрядов. Попутно замеченные Волластоном и Фраунгофером особенности излучения Солнца в последующем позволили Кирхгофу и Бунзену высказывать предположения о составе атмосферы светила. Это тесно связно с рассматриваемой темой, спектр разряда также линейчатый. К примеру, натриевые лампы дают оранжевый свет, и при помощи люминофора приходится распределение частот корректировать (лампы ДРЛ). Потом эстафету принял Майкл Фарадей (с середины 30-х годов XIX века), показал процесс возникновения дуги в среде разреженных газов. Внёс лепту и Генрих Румкорф, предоставив в руки физиков инструмент для получения импульсов высокого напряжения (катушка Румкорфа, 1851 год). В 1835 году Чарльз Уитстон зарегистрировал спектр разряда дуги в парах ртути, попутно отметив ультрафиолетовую составляющую.

Газоразрядные лампы Гейслера

Первыми коммерчески успешными считаются творения Гейслера. Датой рождения принято считать 1857 год. Упомянутый стеклодув и по совместительству физик догадался в колбу с разряженным газов вставить 2 электрода. Подавая на них напряжение, лицезрел красочный разряд дуги. Гейслер соединил воедино открытия Петрова и Хоксби. Дуга тлеет в колбе с атмосферой из паров газа. А дальнейшее – выбор цвета – уже не составило труда, опираясь на наработки сэра Хампфри Дэви и Майкла Фарадея.

С 80-х годов трубки Гейслера широко выпускаются для целей развлечения населения. Сегодня неоновые огни считаются лицом США. Примечательно, что будучи помещены рядом с источниками сильного электромагнитного излучения — катушки Тесла — лампы Гейслера загораются самопроизвольно. Выполняются условия ионизации разреженной газовой среды. Исследования, сопряжённые с поиском технических решений для целей освещения привели учёных к открытию электрона, измерению его заряда и массы, появлению на свет электронных ламп.

Тем временем в России

Возможность розжига порохового заряда электрической искрой известна примерно с 1745 года. Но едва ли сапер мог унести лейденскую банку или терпеливо натирать шерстью янтарь в любых погодных условиях. Долгое время военное дело не брало во внимание подобные мелочи. В 1812 году российский офицер Шиллинг сумел через электрический элемент питания произвести подводный взрыв. Считается, что военное дело дало толчок к развитию исследований электричества в России. Первая дуговая лампа установлена в 1849 году изобретателем (Якоби) на башне Адмиралтейства Санкт-Петербурга. Ее свет оказался столь ярок, что сравнивался обывателями с солнечным.

Применение прожекторов с разрядными лампами ограничивается военным делом, за малым исключением, когда источники указывают путь кораблям с маяка. Нас в теме интересуют наработки Джона Томаса Рея, датированные 1860 годом, догадавшимся объединить электрическую дугу (Петров и Якоби) с атмосферой паров ртути (Майкл Фарадей) при нормальном давлении.

От Эдисона до современных газоразрядных ламп

Несмотря на явные преимущества, газоразрядные лампы Гейслера демонстрировали существенные недостатки. К примеру, малый срок службы. С 90-х годов XIX века некто Дэниэл МакФарлен Мур работал в компании Эдисона и вскоре после поступления на службу стал изучать историю. Его заинтересовали газоразрядные лампы Гейслера. Что не так с моим светом? – вопрошал Эдисон. Мур ответил: он слишком тусклый, слишком горячий и чересчур красный. Это вся правда о лампах накаливания того времени.

В 1892 году ртутная газоразрядная лампа усовершенствована Мартином Лео Аронсом. Наработка в 1901 году усовершенствована Петером Купером Хьюиттом и обрела коммерческий успех.

С 1894 Мур организовывает две собственные компании, занимающиеся проблемами освещения. Главной особенностью ламп (1896 год) стало то, что газ по мере расходования возобновлялся. В результате устройство работало сколь угодно долго. Первое коммерческое использование зарегистрировано в 1904 году. Лампа с отдачей 10 люменов на 1 Вт осветила магазин оборудования и приборов. Как писали очевидцы, несмотря на сложность и громоздкость (50 ярдов длиной) отдача того стоила. КПД новых газоразрядных ламп в 3 раза превышал аналогичные цифры для ламп накаливания.

Отличительной особенностью стало использование в лампах Мура паров азота и углекислого газа. В результате получался дневной свет. А пары азота давали мягкое свечение и низкую цветовую температуру. Появление на свет вольфрамовых нитей сделало невыгодным дальнейшее производство, компании поглощены (1912 год) Дженерал Электрик, а патенты скуплены. Но Мур не остался без работы, перейдя в лаборатории своего преемника в бесконечной эстафете. Позже изобрёл неоновую лампу.

Желающие узнать больше могут заглянуть в разделы про лампы ДРЛ и люминесцентные лампы.

Разрядным источником света или разрядной лампой (РЛ) называют электрическую лампу, в которой свет создается в результате электрического разряда в газе и (или) парах металла (ГОСТ 15049--81, СТ СЭВ 2737--80).

Принцип устройства и применяемые типы разрядов.

Подавляющее большинство разрядных ламп представляют собой прозрачную для оптического излучения колбу цилиндрической, сферической или иной формы. В колбу герметически впаяны два основных электрода, между которыми происходит разряд. Иногда для облегчения зажигания впаивают дополнительные электроды. Внутреннее пространство колбы после удаления воздуха и тщательного обезгаживания лампы (удаление сорбированных в материале колбы и электродах паров воды и других газов при помощи нагрева под откачкой) наполняется определенным газом (чаще всего инертным) до различного давления или инертным газом и небольшим количеством металла с высокой упругостью паров, например ртутью, натрием и др. Начиная с середины 60-х годов широкое распространение получают лампы, в которые кроме инертного газа и ртути вводят специальные излучающие добавки, представляющие собой большей частью галогениды различных металлов.

Существует категория разрядных ламп с электродами, работающими в открытой атмосфере, у которых разряд происходит в воздухе и в парах вещества электродов. Это угольные дуги. В этом типе ламп во время работы расходуется материал электродов. В специальных типах ламп разряд горит в проточном газе.

Существуют также лампы, в которых используется высокочастотный безэлектродный разряд. Они представляют собой запаянную колбу без электродов, содержащую необходимые газы или пары.

В РЛ стационарного действия обычно используются два типа разряда: тлеющий и дуговой, в источниках импульсного действия -- так называемый импульсный разряд. В соответствии с этим различают лампы тлеющего, дугового и импульсного разрядов.

Тип разряда, устанавливающийся в лампе после зажигания, определяется условиями во внешней цепи (значениями питающего напряжения, балластного сопротивления), типом катода и давлением газа или пара, наполняющего лампу.

Тлеющий разряд происходит при малых плотностях тока на катоде и низких давлениях газа или пара, не превышающих нескольких тысяч паскалей (десятки мм. рт. ст.). Его особенностью является большое падение напряжения у катода, составляющее 50--400 В.

Дуговой разряд отличается от тлеющего высокими плотностями тока на катоде (102--104 А/см2) и малым околокатодным падением потенциала (5--15 В). Он может происходить в широком диапазоне давлений (от 0,1 до 1 * 107 Па) и токов (от десятых долей до сотен ампер). По физическим процессам и по характеру излучения он может быть разделен на приэлектродные области и столб. Столб дуговых разрядов низкого давления подобен столбу тлеющих разрядов, происходящих при одинаковых давлениях, диаметрах и токах. Столб дуг высокого и сверхвысокого давлений имеет ряд характерных особенностей, рассмотренных в гл. 4, 14--19.

Импульсный разряд -- разновидность нестационарного разряда, отличающаяся высокой концентрацией мощности при малой длительности (не превышающей 5-Ю-3 с).

В РЛ стационарного действия наиболее широко используются дуговые разряды, так как с их помощью удается создавать источники с весьма разнообразными характеристиками, обладающие высокой эффективностью при сравнительно низких рабочих напряжениях.

В подавляющем большинстве ламп используется излучение столба, обладающее значительно более высоким КПД по сравнению с излучением приэлектродных частей и позволяющее в широких пределах изменять размеры и характеристики светящейся области. Излучение приэлектродных областей, например тлеющее свечение, используется только в специальных типах ламп.

Классификация PЛ может проводиться по различным признакам. Ввиду большого разнообразия свойств РЛ и применяемости одних и тех же ламп в различных областях ниже приведена классификация по физическим признакам, которые характеризуют все основные свойства разряда, такие, как спектр излучения, распределение интенсивности излучения в спектре, яркость, градиент потенциала, энергетический КПД и др. Все эти свойства разряда определяются в первую очередь составом газовой среды, в которой происходит разряд, парциальными давлениями компонентов газовой смеси и силой тока. Вместе с типом разряда, используемой областью свечения и размерами газового промежутка, они определяют мощность и напряжение, габариты и конструкцию лампы и ее узлов, их тепловой режим, выбор материалов и связанные с этим особенности эксплуатации и области применения.

По составу газовой или паровой среды, в которой происходит разряд, лампы делят на лампы с разрядом в газах, в парах металлов и в парах металлов и их соединений.

По величине рабочего давления -- на лампы низкого давления (НД) примерно от 0,1 Па до 25 кПа, высокого давления (ВД) от 25 до 1 - 103 кПа и сверхвысокого давления (СВД) больше 1 - 103 кПа.

По типу разряда -- на лампы дугового, тлеющего и импульсного разрядов.

По области свечения -- на область столба и область тлеющего свечения.

По типу источника излучения -- на:

газо- или паросветные, в которых основным источником излучения являются возбужденные атомы, молекулы или рекомбинирующиеся ионы;

фотолюминесцентные (называемые для краткости просто люминесцентные), в которых основным источником излучения являются люминофоры, возбуждаемые излучением разряда;

электродосветные, в которых основным источником излучения являются электроды, раскаленные в разряде до высокой температуры.

У большинства фотолюминесцентных и электродосветных ламп к основному виду излучения примешивается излучение разряда, так что они являются, по существу, источниками смешанного излучения.

По форме колбы лампы со столбом подразделяют на:

трубчатые или линейные -- лампы в цилиндрических колбах, у которых расстояния между электродами в 2 и более раз превышают внутренний диаметр трубки;

капиллярные -- в трубках с внутренним диаметром меньше 4 мм;

«шаровые» -- лампы с расстоянием между электродами, меньшим или равным внутреннему диаметру колбы (колбы ламп имеют часто форму шара или близкую к ней, откуда и получили свое название), их называют также лампами с короткой или средней длиной дуги.

По охлаждению лампы подразделяют на лампы с естественным и принудительным (воздушным или водяным) охлаждением.

В некоторых типах ламп разрядную колбу, часто называемую горелкой, помещают во внешнюю колбу, которая чаще всего служит для обеспечения теплового режима горелки, но вместе с тем может выполнять и другие функции.

Области применения PЛ.

Давно было известно, что ртутные лампы высокого давления и натриевые лампы низкого давления обладают высокими световыми отдачами. Однако попытки применения этих ламп для целей освещения не имели успеха из-за сильного искажения цветопередачи, особенно цвета человеческой кожи. Впервые этот недостаток удалось преодолеть в ртутных люминесцентных лампах низкого давления. Их появление в 1938 г. ознаменовало собой новый этап в развитии разрядных источников света. Впервые были созданы ЛЛ, дающие излучение с непрерывным спектром практически любого состава и обладающие при этом световой отдачей и сроком службы, в несколько раз превышающими световые отдачи и сроки службы ламп накаливания. Световые отдачи современных ЛJI достигают 85--90 лм/Вт, а сроки службы 12--15 тыс. ч и более. В настоящее время ЛЛ являются наиболее массовым разрядным источником света, применяемым для освещения. Их мировой выпуск достигает почти 1 млрд. ламп в год.

В начале 50-х годов появились ртутные лампы высокого давления с исправленной цветностью типа ДРЛ. Эти лампы, обладающие высокой светоотдачей (45--60 лм/Вт) и сроком службы 10--15 тыс. ч, получили в настоящее время весьма широкое применение. Их мировой выпуск достигает многих десятков миллионов ламп в год и продолжает расти.

В 60-х годах были открыты новые, исключительно плодотворные направления в создании разрядных ламп высокой интенсивности с самым различным спектром излучения и более высокими КПД, чем у существовавших до этого. Впервые для ламп высокой интенсивности удалось перешагнуть рубеж в 100 лм/Вт. Уже разработано и выпускается большое число новых типов, которые по многим параметрам значительно превосходят ртутные лампы высокого давления типа ДРЛ и занимают видное место в семье разрядных источников света. Это натриевые лампы высокого давления в колбах из кристаллического оксида алюминия, широко применяемые для наружного освещения, и различные типы так называемых металлогалогенных ламп.

Наряду с освещением разрядные лампы находят многочисленные и весьма важные применения во многих отраслях народного хозяйства, в новейшей технике и в военном деле, что объясняется особенностями электрического разряда, которые позволяют создавать источники излучения с очень разнообразным сочетанием параметров. Путем подбора соответствующего наполнения и условий разряда удается создавать высокоэффективные источники излучения практически в любой части не только видимого, но также УФ- и ИК-областей спектра, при этом можно получать спектры излучения, состоящие из одиночных линий, многолинейчатые и непрерывные.

Это достоинство РЛ открыло им исключительно широкие возможности применения не только для освещения, но также для многочисленных специальных целей. Так, например, в промышленности, сельском хозяйстве, медицине и других отраслях народного хозяйства широко используются фотолюминесценция, фотохимические, биологические, бактерицидное и другие действия УФ-излучения; красное излучение неона применяется для сигнального освещения, ИК-излучение -- для лучистого нагрева, сигнализации, связи и т. д.

Разряды высокого и особенно сверхвысокого давления имеют высокие яркости в различных областях спектра, в десятки и сотни раз превосходящие яркости ламп накаливания, благодаря чему они с успехом применяются в различных светооптических приборах и установках.

Малая инерционность излучения разряда является недостатком для общего освещения, поскольку она приводит к большим пульсациям, светового потока при работе в стандартных сетях переменного тока с частотой 50 Гц. В то же время она открывает РЛ множество специальных применений там, где требуется модуляция излучения.

Широкое и весьма разнообразное применение находят импульсные лампы, дающие вспышки излучения исключительно высокой яркости и очень малой длительности. Они применяются в многочисленных приборах и установках для наблюдения и изучения быстродвижущихся частей машин и механизмов (в стробоскопах), при фотографировании и изучении быстро- протекающих процессов, аэрофотосъемке, оптической дальнометрии и т. д. В настоящее время импульсные лампы широко применяются для оптической накачки лазеров.

Наряду со многими достоинствами РЛ имеют и недостатки, главным из которых является некоторая сложность их включения в сеть, связанная с особенностями разряда. При зажигании требуются более высокие напряжения, чем при устойчивом горении. Для обеспечения устойчивого режима горения в цепь каждой лампы приходится включать балласт, ограничивающий ток разряда требуемыми пределами.

Характеристики ламп с разрядом в парах металлов или веществ зависят от их теплового режима, и их нормальный режим устанавливается только спустя некоторое время после включения. Повторное зажигание ламп с разрядом в парах металла при высоком и сверхвысоком давлениях без специальных приемов возможно только по истечении некоторого времени после выключения.

Газоразрядная лампа - это источник света, излучающий энергию в видимом диапазоне. Свечение в лампе создается непосредственно или опосредованно от электрического разряда в газе, парах металла или в смеси пара и газа.

Все газоразрядные лампы можно разделить на четыре основные группы:

  • металлогалогенные лампы;
  • натриевые лампы высокого давления;
  • ртутные лампы высокого давления;
  • натриевые лампы низкого давления.

Для расчёта освещенности помещения вы можете воспользоваться калькулятором расчета освещенности помещения .

Газоразрядная лампа состоит из стеклянной, керамической или металлической (с прозрачным выходным окном) оболочки цилиндрической, сферической или другой формы, которая содержит газ, иногда небольшое количество металла или др. вещества (например, галоидной соли) с предельно высокой упругостью пара..

Устройство газоразрядных ламп.

3.Горелка;

4.Основной электрод;

5.Поджигающий электрод;

6.Токоограничительный резистор

Характеристики газоразрядных ламп.

  • срок службы от 3000 часов до 20000;
  • эффективность от 40 до 220 лм/Вт;
  • цвет излучения: от 2200 до 20000 К;
  • цветопередача: хорошая (3000 K: Ra>80), отличная (4200 K: Ra>90);
  • компактные размеры излучающей дуги, позволяют создавать световые пучки высокой интенсивности.

Газоразрядные лампы делятся на три типа:

  • газоразрядные лампы низкого давления (от 0,1 до 25 кПа) - люминесцентные лампы;
  • газоразрядные лампы высокого давления (от 25 до 1000 кПа) лампа ДРЛ;
  • газоразрядные лампы сверхвысокого давления (от 1000 кПа) РЛСВД лампы.

Разрядные лампы высокого давления это что то среднее между лампами накаливания и люминесцентными лампами. Из за повышенной по сравнению с люминесцентными лампами мощности, газоразрядные лампы позволяют добиться интенсивного, концентрированного света, при этом сохраняя все преимущества газоразрядной технологии (экономичность и гибкость в выборе цветности).

Газоразрядные лампы применяют для общего освещения, облучения, сигнализации и других целей..

Принцип действия газоразрядных ламп высокого давления.

Электрические разряды между электродами вызывают свечение наполнителя в разрядной трубке. Излучаемый лампой свет является следствием происходящих в ней дуговых разрядов. Для ограничения тока и для зажигания всем газоразрядным лампам необходимы специальные ПРА . В отличие от газоразрядных ламп (например, ксеноновых ламп) паросветным лампам после зажигания необходимо определенное время пускового режима (2-3 минуты), чтобы достичь своей полной световой отдачи. Это время необходимо собственно для того, чтобы вещества-наполнители могли полностью испариться.

Преимущества газоразрядных ламп.

  • высокий КПД;
  • длительный срок службы по сравнению с лампами накаливания;
  • экономичность;
  • высокая степень цветопередачи;
  • хорошая стабильность цвета;
  • хорошие характеристики светового потока в течение всего срока службы.

Недостатки газоразрядных ламп

  • высокая стоимость;
  • необходимость пускорегулирующей аппаратуры;
  • долгий выход на рабочий режим;
  • высокая чувствительность;
  • наличие токсичных компонентов и как следствие необходимость в инфраструктуре по сбору и утилизации;
  • невозможность работы на любом роде тока;
  • невозможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт);
  • наличие мерцания и гудения при работе на переменном токе промышленной частоты;
  • прерывистый спектр излучения;
  • непривычный в быту спектр.

Разрядные источники оптического излучения, в том числе светового, работают по принципу преобразования в оптическое излучение энергии дугового электрического разряда.

Тихий и тлеющий электрические разряды из-за крайне малого КПД излучения для целей освещения и облучения не используют.

В зависимости от давления внутри разрядной колбы различают лампы: низкого (0,1...10 4 Па), высокого (3×10 4 …10 6 Па) и сверхвысокого (более 10 6 Па) давления. От значения рабочего давления в колбе зависят КПД и спектр излучения разрядной лампы.

У разрядных ламп низкого давления энергетический КПД (Фл/Рл ) высокий, а световой КПД потока излучения (Фс/Фл ) мал, так как значительная часть их излучения сосредоточена в невидимой УФ-зоне спектра. Для разрядных ламп высокого давления наоборот: энергетический КПД меньше, а световой КПД больше.

Так как эффективный световой КПД лампы (Фс/Рл ) равен произведению КПД энергетического (Фл/Рл ) и светового (Фс/Фл ), то это обусловило равноценную применимость обоих типов ламп.

В отличие от ламп накаливания, имеющих сплошной спектр излучения, разрядные лампы обладают ступенчатым или полосовым спектром, состав излучения которого зависит от состава газа и паров металла, наполняющих разрядную колбу (рис.2.1).

Рис.2.2. Устройство (а) и типовая стартерная схема включения (б) трубчатой разрядной лампы низкого давления:
1 – колба; 2 – стеклянная ножка; 3 – спиральный электрод; 4 – цоколь; 5 – штыревые токоподводы.

Разрядные лампы низкого давления имеют разрядную колбу 1 в виде стеклянной трубки, на концах которой в цоколь 4 вмонтированы штыревые токоподводы 5 (рис.2.2 а). В оба цоколя 4 лампы через стеклянные ножки 2 впаяны оксидированные электроды 3 , выполненные в виде моноспирали из вольфрама. У осветительных ламп внутренняя часть колбы из обычного стекла, которое не пропускает УФ-излучение, покрыта слоем люминофора. У ламп для УФ-облучения колбы выполняют из специального кварцевого или увиолевого стекла, которое имеет высокий коэффициент пропускания УФ-излучения соответствующей зоны УФ-спектра. Внутренний объем колбы заполняют аргоном и вводят небольшое количество ртути. Электрический разряд в лампе начинается в атмосфере инертного газа аргона, а затем по мере испарения ртути продолжается в её парах.

В люминесцентных разрядных лампах преобразование электрической энергии в видимое излучение происходит в два этапа .

На первом этапе электрический разряд в парах ртути сопровождается УФ-излучением в виде двух монохроматических потоков с длинами волн 253,7 и 184,9 нм, которые сами по себе являются мощными источниками бактерицидного излучения.


На втором этапе возникающее коротковолновое УФ-излучение преобразуется в слое люминофора колбы в видимое. То есть, в излучение с большей длиной волны и, соответственно, согласно (1.1) и (1.2) с меньшей энергией фотонов, так как что часть энергии фотонов теряется в слое люминофора на втором этапе преобразования. Изменяя состав люминофора, изменяют спектральный состав видимого излучения лампы.

Маркировка люминесцентных ламп низкого давления содержит буквенное обозначение, начинающееся с буквы Л (люминесцентная) и второй буквы, раскрывающей особенности ее спектра излучения: Б - белая, ТБ - тепло-белая, ХБ - холодно-белая, Д - дневная, Е - естественная, БЕ - белая естественная, ХЕ - холодная естественная. Ц - с повышенной цветопередачей, УФ - ультрафиолетовая, Ф - фотосинтезная, Р - рефлекторная, У - U – образная, К – кольцевая. После буквенного обозначения следуют цифры, указывающие мощность лампы в ваттах, и через дефис - номер разработки. Например, ЛБР-80 - лампа люминесцентная белая рефлекторная мощностью 80 Вт.

Средняя продолжительность горения осветительных люминесцентных ламп низкого давления составляет 12...15 тыс.ч, светоотдача - 40...80 лм/Вт, мощность - от 3 до 200 Вт (наиболее массовые мощностью 15...80 Вт).

Из-за падающей волътамперной характеристики электрического разряда для стабилизации режима в цепь разрядной лампы необходимо включать токоограничивающее балластное сопротивление, которое может быть активным (например лампы типа ДРВЛ), индуктивным (большинство ламп), емкостным или их комбинацией. Поэтому в сеть разрядные лампы включают через специальный пускорегулирующий аппарат (ПРА), который обеспечивает зажигание лампы и стабилизацию её дугового разряда в рабочем режиме.

На схеме, показанной на рисунке 2.2 б, представлен типовой вариант включения люминесцентной лампы низкого давления с использованием дроссельного ПРА и лампового стартера тлеющего разряда. Схема содержит осветительную люминесцентную лампу низкого давления EL, индуктивное балластное сопротивление в виде дросселя LL, ламповый стартер VL, помехоподавляюший конденсатор С2 и компенсирующий конденсатор С1 , повышающий коэффициент мощности установки с 0,4...0,6 до 0,92...0,95. Сопротивление R предназначено для разряда конденсаторов С1 и С2 после отключения лампы от сети.

При включении схемы и незагоревшейся лампе EL сетевое напряжение практически полностью оказывается приложенным к стартеру, выполненному в виде лампы тлеющего разряда VL. Под действием высокого напряжения в стартере VL возникает тлеющий электрический разряд. Под действием выделяющегося в результате разряда тепла биметаллические электроды стартера VL изгибаются и в конечном итоге замыкаются. Разряд прекращается, и спиральные электроды лампы EL за счет замыкания контактов стартера VL разогреваются током, примерно в 1,5 раза превышающим номинальный ток лампы. Процесс разогрева длится 0,5...3 с, пока биметаллические электроды стартера не остынут и не разомкнут цепь разогрева. В результате размыкания цепи разогрева со стороны дросселя LL возникает ЭДС самоиндукции, которая, накладываясь на напряжение сети, вызывает электрический разряд и загорание предварительно разогретой лампы EL, обладающей к этому моменту повышенной электронной эмиссией нагретых электродов. За счет протекания тока загоревшейся лампы EL на дросселе LL возникает дополнительное падение напряжения, которое уменьшает напряжение на электродах стартера VL ниже значения его зажигания, и работа стартера VL при зажженной лампе EL прекращается.

В настоящее время выпускаются энергоэконмичные люминесцентные лампы низкого давления пониженной мощности: 18 Вт вместо 20 Вт, 36 Вт вместо 40 Вт и 58 Вт вместо 65 Вт. Они имеют уменьшенный диаметр трубчатой колбы (25 мм вместо 40 мм) и повышенную световую отдачу.

Наряду с трубчатыми люминесцентными лампами низкого давления для целей электроосвещения широкое применение нашли дуговые ртутные люминесцентные лампы высокого давления типа ДРЛ.

На рисунке 2.3 а показано устройство четырехэлектродной люминесцентной лампы высокого давления типаДРЛ, а на рисунке, б - типовая схема её включения в сеть.

Зажиганию четырехэлектродной разрядной лампы типа ДРЛ способствует предварительный тлеющий разряд между основным 11 и поджигающим б электродами (рис. 2.3 а). Период разгорания лампы типа ДРЛ длится около 5 мин. За это время происходит разогрев внутренней колбы 8 и испарение находящейся в ней ртути с одновременным повышением давления внутри колбы 8. При этом электрический разряд распространяется на основные электроды. Лампа выходит на нормальный режим со стабилизацией всех её параметров.

После отключения разрядной лампы высокого давления её повторное зажигание возможно только после остывания лампы и соответствующего снижения давления во внутренней разрядной колбе до значения, при котором возможен повторный процесс зажигания.