Этапы формирования географической оболочки. Этапы развития географической возраст оболочки

Географическая оболочка стала формироваться с того момента, когда растущая планета приобрела возможность саморазвития, т. е. по завершении в основном аккреационного образования ядра и мантии. Каждая планета начинает в это время создавать свои внешние оболочки, отражающие особенности самостоятельного развития. Для временной оценки событий и явлений далекого прошлого существуют свои методы определения возраста. Первоначально исходили из последовательности залегания горных пород и характера внедрений одних в другие. Затем появилась возможность дать им палеонтологическую характеристику по останкам организмов. Открытие радиологических методов позволило оценить абсолютный возраст земных образований.

Историю Земли подразделяют на два этапа (зона): криптозой (время скрытой жизни) и фанерозой (время явной жизни).

Фанерозой довольно хорошо изучен и на основании палеонтологических материалов, подтвержденных данными других методов, подразделен на эры, периоды и эпохи (табл. 8.1).

Криптозой изучен слабо, особенно его ранние этапы. Общепринято деление криптозоя напротерозой иархей. Время между возникновением планеты и образованием известных ныне горных пород определяют каккатархей.

Фактологических данных о начальном этапе становления географической оболочки практически нет. Несомненно, что земные процессы и явления того времени происходили в условиях интенсивного космического энергетического воздействия, а также бомбардировки метеоритами и другими телами, которые относительно легко достигали земной поверхности при отсутствии существенной атмосферы. Количество твердых разноразмерных объектов в окружающем пространстве было еще значительным из-за неполной упорядоченности вещества допланетного облака. В условиях остаточной атмосферы первичной туманности началось формирование собственно планетных образований. По общим представлениям ученых, подкрепленным и радиологическим материалом, Земля как самостоятельная планета образовалась 4,5-4,7 млрд лет назад.

Предполагается, что в катархее и раннем архее вулканогенные горные породы, вероятно, основного (базальтового) состава создали первичную земную кору, закрывшую ультраосновную пери-дотитовую корку аккрецированной планеты со следами многочисленных метеоритных бомбардировок. Поступающие из недр соединения углерода, серы, аммиака, водорода и других газов и эманации стали замещать постоянно диссипирующую остаточную водородно-гелиевую атмосферу и формировать первичную земную атмосферу, а выделяющиеся при дегазации недр водяные пары и другие жидкости могли конденсироваться и дать начало образованию поверхностных вод гидросферы. В дегазируемом веществе могли находиться и незначительные количества кислорода, который фактически не мог существовать в свободном состоянии и активно соединялся с другими элементами. Конденсация жидкостей из горячих паров скорее всего происходила вблизи земной поверхности и в толщах эффузивных образований, представленных чаще всего лавами, лаво-брекчиями и пеплами.

Таблица 8.1. Стратиграфическая шкала

Эратема (эра)

Продолжительность, млн лет

Система (период)

Начало, млн лет

Продолжительность, млн лет

Отдел (эпоха)

Продолжительность, млн лет

фанерозой (750 млн лет)

Кайнозойская Kz

Четвертичный (антро-погеновый) Q

Плейстоцен

Эоплейстоцен

Неогеновый N

Палеогеновый Р

Олигоцен

Палеоцен

Мезозойская Mz

Меловой К

Триасовый Т

Палеозойская Pz

Пермский Р

Каменноугольный С

Девонский D

Силурийский S

Ордовикский О

Кембрийский Є

Продолжительность, млн лет

Эратема (эра)

Система (период)

Начало, млн лет

Продолжительность, млн лет

Отдел (эпоха)

Начало, млн лет

Продолжительность, млн лет

криптозой(докембрий)

Протерозой Pr

Верхний (поздний)

Нижний (ранний)

Верхний (поздний)

Нижний (ранний)

Верхний (поздний)

Нижний (ранний)

Азойский (катархейский)

Рис. 8.1. Схема эволюции географической оболочки

На рис. 8.1 и 8.2 приведены схемы эволюции химического состава атмосферы и форм жизни на Земле. На рис. 8.2 показано также соотношение между содержанием кислорода в атмосфере в разные геологические эпохи и возникновением и количеством жизненных форм организмов (бактерий, растений, животных). Заметим, что схемы исходят из предположения о земном происхождении жизни, которая запаздывает по отношению к абиогенной природе. В настоящее время многие считают, что начальные формы жизни присутствовали с момента аккреции или со времени ее окончания. К тому же новейшие исследования показали наличие остатков живых организмов в породах с возрастом 3,5-3,2 млрд лет, а время начального фотосинтеза установлено на рубеже 3,5-3,8 млрд лет. К этому времени относятся и находки проблематичных остатков жизни.

Многочисленные эксперименты по получению из неорганических элементов органических соединений неоднократно приводили к успеху. Однако всегда из неорганических химических компонентов получались только химические органические соединения без признаков биологической активности. Таким образом, очевидно существование в природе двух принципиально различных типов вещества: минерального атомарно-кристаллического иживого атомарно-организменного. Коренные различия в биологической активности, даже химически одинаковых соединений, свидетельствует об их принципиальной индивидуальности и невозможности перехода минеральных неорганических и органических веществ в биоорганические живые вещества. Поэтому не следует искать на Земле следы начала жизни. Жизнь вечна и имеет свои особые формы существования.

Рис. 8.2. Схема развития органического мира на фоне изменения содержания свободного кислорода (по Б. С. Соколову): 1 - губки;2 - кишечнополостные;3 - гребневики;4 - черви; 5 - членистоногие;6 - моллюски; 7- мшанки;8 - брахиоподы;9 - иглокожие;10 - погонофоры;11 - рыбы;12 - полухордовые;13 - позвоночные (черепные); КСА - концентрация кислорода в современной атмосфере

Реконструкция состава литосферы. Наиболее древние из обнаруженных горных пород с возрастами 3,8-4,1 млрд лет известны лишь в нескольких местах: запад Австралии, юг Африки, восток Южной Америки, северо-восток Северной Америки и юг Гренландии, центр и юго-восток Азии, восток Европы и Антарктида. Наиболее типичными формированиями являются «серые гнейсы», местами подстилаемые «розовыми гнейсами», или гранулитами, с залегающими на них осадочно-вулканогенными отложениями.

Последние хорошо изучены в разрезах юга Гренландии, где они представлены серией Исуа, которая сложена амфиболитами, кремнистыми и карбонатными сланцами с прослоями обломков, полосчатыми железистыми кварцитами с точечными вкраплениями округлых образований окисленного железа, конгломератами с гальками кварцитов, карбонатно-кремнистыми и карбонатными породами. Абсолютный возраст пород серии Исуа и подстилающих их гнейсов составляет 3,8 - 3,7 млрд лет.

Результаты анализа отложений позволяют с разной степенью достоверности утверждать:

    наличие в это время на поверхности планеты воды;

    развитие эрозионно-денудационной деятельности на суше, поставлявшей обломочный материал в водоемы;

    существование разных химических условий осадконакопления, из-за чего сменялось накопление железистых, карбонатных или кремнистых осадков;

    появление свободного кислорода, о чем свидетельствуют округлые выделения окисленного железа, что некоторыми исследователями связывается с присутствием фотосинтезирующих организмов;

    вкрапления могут быть остатками первичных организмов гетерогенного типа, названных исуасферами;

    наличие остатков живых организмов требует признания более раннего существования автотрофной жизни;

    начало осадконакопления, видимо, происходило одновременно с остыванием формирующейся земной коры и изменением горных пород (метаморфизмом);

    произошла смена состава атмосферы - окончательно исчезла остаточная и возникала первичная земная углекислого состава, что подтверждается химизмом горных пород, изменением степени метаморфизма, спецификой жизнедеятельности;

    к моменту начала накопления осадков на Земле уже существовала жизнь в достаточно развитой форме.

Известно, что поверхность молодой планеты получала много тепла из недр благодаря малой мощности земной коры, а также извне - от остаточной атмосферы, водородно-гелиевый состав которой обеспечивал высокие температуры и давления. Поэтому метаморфизм мог происходить непосредственно на поверхности Земли или метаморфический облик являлся исходным для пород того времени. Именно разным прогревом можно объяснить смену «розовых гнейсов» и гранулитов с оригинальными овоидными структурами на «серые гнейсы», а затем на амфиболито-зеленосланцевые породы.

Нахождение остатков организмов в древних осадочно-метаморфизованных породах свидетельствует об их более раннем происхождении и связи с водной средой. Но совершенно не обязательно наличие огромных водоемов. Для процесса жизнедеятельности вполне достаточно водных капель на поверхности суши или в пустотах горных пород. Очевидно, что остатки жизни надо искать не только в осадочных породах, но и в метаморфических разностях, включая гнейсы и граниты. Случаи обнаружения в них организмов науке известны, хотя и вызывают много вопросов. Исследования геологов-нефтяников и специалистов по дегазации Земли свидетельствуют о поступлении из мантийного вещества сложных углеводородов, способных не только объяснять происхождение нефти, но и стать источниками первичных форм жизни.

О наличии жизнедеятельности уже на первых порах развития земной коры свидетельствует факт установления в породах черно-сланцевой формации углерода биоорганического происхождения. Предполагают, что уже 3,2-3,5 млрд лет назад при образовании мощных (до нескольких сотен метров) толщ углистых сланцев почти половина слагающего их углерода возникла за счет гибели живых организмов и углефикации их вещества. Трудно представить необходимое количество микроорганизмов с массой в сотые и тысячные доли грамма, но то, что окружающая среда позволяла им осуществлять активную деятельность, несомненно. Таким образом, еще раз хочется отметить прозорливость В. И. Вернадского и согласиться с его выводом о том, что исследование земного материала не указывает на наличие такого времени, когда не было живого вещества. В геологическом смысле жизнь вечна.

Реконструкции состава атмосферы. Очевидно, что первичная атмосфера, вначале постепенно, а затем относительно быстро (в геологическом масштабе времени) стала замещаться вторичной, где уже преобладали азот и кислород в свободном состоянии. С начала фанерозоя (570 млн лет назад) до середины девонского периода концентрация кислорода составляла меньше половины современной (рис. 8.3). В конце девона - карбоне - вероятно, в связи с интенсивным вулканизмом и бурным развитием наземной растительности, содержание кислорода резко увеличилось, превысив даже современный уровень. На протяжении позднего палеозоя наблюдается снижение содержания О 2 , достигшее минимума на границе перми и триаса. В начале юрского периода отмечено его резкое увеличение, превысившее современный уровень в 1,5 раза. Такая ситуация существовала до середины мела, когда произошло снижение концентрации О 2 до современного уровня.

Не менее контрастно в фанерозое менялось содержание атмосферного СО 2 . В начале фанерозоя оно было 10-кратным по отношению к современному, к началу девона снизилось, а затем, по-видимому, в связи с каледонским вулканизмом стремительно возросло. В последующем наблюдались резкие колебания СО 2 , обусловленные вулканизмом, различной активностью фотосинтезиру-ющих организмов, температурой Мирового океана и состоянием карбонатной системы «атмосфера-океан-донные осадки», являющейся основным поглотителем СО 2 .

Рис. 8.3. Эволюция содержания О 2 и СО 2 и колебаний выбросов вулканического материала К вулк в фанерозое (по М. И. Будыко)

Газовый состав атмосферы, гидросферы и литосферы часто считают функцией лишь жизнедеятельности организмов, главным образом процесса фотосинтеза. Но это не единственный, а подчас, видимо, и не главный источник. При дегазации недр поступают не меньшие количества различных газов, в том числе мантийного кислорода с иным, чем у фотосинтетического, соотношением изотопов. Сравнение содержаний кислорода и диоксида углерода в разные эпохи фанерозоя показывает их сходный характер, что не может быть объяснено фотосинтезом, в процессе которого диоксид углерода расходуется на формирование органического вещества и при этом выделяется избыток свободного кислорода. Если же учесть совпадение эпох повышенных концентраций кислорода и диоксида углерода с периодами орогенеза, тектонических движений и трансформаций земных недр, то их источник становится очевидным. С течением времени в земной атмосфере происходило уменьшение количеств диоксида углерода при возрастании содержаний азота и кислорода, но процесс этот не был постепенным, а носил скачкообразный характер, обусловленный ритмичным проявлением природных процессов.

Реконструкция гидросферы. Установлено, что первичные воды были кислыми из-за активных вулканических процессов и углекислого состава атмосферы, поставлявшей основные осадки. Пресные воды появились позднее, очевидно, в результате резких климатических изменений - ледниковых периодов и межледниковых эпох (рис. 8.4 и табл. 8.2). Одним из самых спорных остается вопрос об объеме земных вод. Очевидно, что изначально не могло возникнуть такого огромного количества воды - не было источника. Кроме того, все первичные водоемы докембрия носили эпиконтинентальный характер - это залитая водой бывшая суша. Современные материалы о строении дна океанов свидетельствуют об их возникновении только с середины мезозойского времени (180-200 млн лет). Довольно убедительны доказательства о происхождении их за счет раздвигания земной коры по зонам рифтогенных разломов с внедрением мантийного вещества основного и ультра-основного составов и одновременным заполнением водами, как атмосферного, так и глубинного генезиса. Процесс продолжается до настоящего времени (рис. 8.5). Для некоторых океанов, например Атлантического (см. рис. 5.5), характерно симметричное расположение пород одного возраста относительно центральной зоны срединно-океанического хребта, для других, например, Тихого (см. рис. 5.4), - более сложное.

С возникновением атмосферы и гидросферы начались выветривание первичных пород земной коры, перенос минерального вещества и образование осадочных пород. В настоящее время известно всего несколько районов выхода на дневную поверхность древнейших горных пород (рис.8.6). Осадочные и магматические породы, попадая в условия высокого давления температуры, превращались в кварциты, гнейсы, сланцы, формируя гранитогнейсовый слой континентальной земной коры. Закладывались фундаменты древних платформ. По мере их развития древнейшие участки земной коры становились щитами, возникали более молодые осадочно-вулканогенные бассейны аккумуляции, которые впоследствии образовали чехол докембрийских платформ. Неоднократное проявление во времени таких процессов привело к современной структуре материков - сочленению платформ разного возраста, отчасти разделенных складчатыми поясами и областями более молодого осадконакопления.

Рис. 8.4. Распределение эпох горообразования и ледниковых периодов за последние 600 млн лет (по Б.Джону и др., 1982). Хронология эпох орогенеза различается в разных странах

Таблица 8.2. Ледниковые периоды в истории Земли (по Б.Джону, Э.Дербиширу, Г.Янгу, Р. Фейербриджу, Дж. Эндрюсу, 1982)

Ледниковый период

Примерный возраст, млн лет

Примерная продолжительность, млн лет

Геологический период

Кайнозойский

Четвертичный и третичный

Мезозойский (?)

Не известна

Юрский (?)

Пермско-каменно-угольный

Пермский и каменноугольный

Позднеордовикский

Силурский и ордовикский

Варангский, или эокембрийский

Позднепротерозой

Стертский, или инфракембрийский I

Гнейсеский, или инфракембрийский II

Средне- и позднепро-терозойский

Гуроне кий (вероятно, включает два или три ледниковых периода)

Раннепротерозойский

Рис. 8.5. Крупные литосферные плиты (по В.Моргану, 1968): - границы расходящихся плит (цифры показывают скорость спрединга, см/год); - границы сходящихся плит (желоба и цепи альпийских гор); 3 - мантийные струи, или вулканизм «горячих точек»

Рис. 8.6. Главные тектонические структуры Земли (по А.С.Монину, 1977): материки: 1 - древние ядра платформ;2 - щиты;3 - докембрийские платформы;4 - первичные дуги (поясы Альпийского орогенеза, зоны сжатия);5 - офи-олитовые зоны;океаны: 6- контуры срединно-океанических хребтов; 7- рифто-вые долины (зоны растяжения);8 - поперечные разломы;9 - глубоководные желоба; стрелки - направление растяжения

Рис. 8.7. Схема некоторых основных событий в истории биосферы (по В.А.Вронскому, Г.В.Войткевичу, 1997)

Реконструкция органического мира. Быстрое развитие органического мира началось в конце протерозоя - начале палеозоя (хотя наиболее древние следы жизни почти ровесники осадочных пород). Вордовике появились первые представители позвоночных животных - панцирные рыбы. Всилуре растения и животные вышли на сушу, с чем связывают увеличение содержания кислорода в атмосфере, достигшее половины его современного уровня. Произошло оформление озонового слоя, который стал защищать приповерхностные слои Земли от жесткого солнечного и космического излучения. Появление озонового слоя и его роль в жизнедеятельности организмов намного сложнее, чем обычно считается. Во-первых, доказано, что многие организмы, особенно простейшие практически не реагируют на космическое излучение. Во-вторых, в геологических разрезах обнаружены следы достаточно развитых палеопочв с возрастами до 3,1 млрд лет, что свидетельствует о поверхностной жизнедеятельности организмов, участвующих в почвообразовательных процессах. В этой связи к приведенной схеме развития органического мира с указанием критических точек содержания кислорода следует относиться как к одному из возможных вариантов. Приведем еще одну схему некоторых основных событии эволюции географической оболочки, показывающей фактическую идентичность понятийбиосфера в широком смысле игеографическая оболочка (рис.8.7).

Выход сравнительно высокоразвитых организмов на сушу явился революцией в развитии органического мира и всей природы земной поверхности. Многообразие экологических условий на суше стимулировало биологическую эволюцию. Резко возросла масса живых организмов, усилились и приобрели большее разнообразие биогеохимические круговороты.

В девоне четко оформилась дифференциация физико-географических обстановок: появились лесные, болотные и аридные ландшафты, лагунное соленакопление, возникла окислительно-восстановительная контрастность географической оболочки. Скарбона стала отчетливо проявляться географическая зональность, следы которой известны еще с протерозоя.

В мезозое дифференциация и усложнение физико-географических условий продолжались. На рубеже палеозойской и мезозойской эр произошла резкая смена животного мира -началось бурное развитие пресмыкающихся (ящеров). Вюре появились покрытосеменные (цветковые) растения, а в мелу они стали господствующими. В конце мелового периода гигантские пресмыкающиеся вымерли. Возникли степи и саванны.

К мезозойской эре относятся крупные изменения в строении поверхности Земли, связанные с мощными расколами земной коры вплоть до верхней мантии, ее раздвижением и образованием океанических впадин. Возникла современная конфигурация континентальных и океанических глыб с высотой суши до 9 км (гора Джомолунгма, 8848 м) и глубинами океана более 11 км (Марианский желоб, 11 034 м). Такой контрастный рельеф появился впервые в истории Земли, что, несомненно, сказалось на функционировании географической оболочки.

События кайнозоя оказали огромное влияние на современный облик земной поверхности. Одним из важнейших событий явилась альпийская складчатость, начавшаяся впалеогене и охватившая большие площади Альпийско-Гималайского и Тихоокеанского поясов. Отнеогена ведет отсчет неотектонический, или новейший, этап развития земной коры, который ознаменовался интенсивным поднятием материков: высота суши в неогене и плейстоцене увеличилась в среднем на 500 м. В геосинклинальных поясах образовались молодые горы, испытали повторные поднятия и более древние горы (Тянь-Шань, Урал, Аппалачи и др.).

Рост площади и высоты материков способствовал охлаждению земной поверхности. В Антарктиде с середины миоцена образовался ледниковый покров (в Северном полярном бассейне морские льды и ледники на прилегающей суше и островах возникли значительно позднее). Около ледниковых щитов образовались перигляциальные зоны с холодным сухим климатом и тундрово-степной растительностью.

Последний период кайнозойской эры - четвертичный - называют также антропогеновым (в связи с появлением человека) или ледниковым (в связи с усилением похолодания и распространением ледников на значительных пространствах Северной Америки и Евразии). На Русской равнине ледники достигали 49° с.ш., а в Северной Америке - даже 37° с. ш.

Время, когда ледники занимали большие площади, называют ледниковыми эпохами, когда отступали -межледниковыми эпохами. Современная эпоха -голоцен, наступившая около 10-12 тыс. лет назад, скорее всего, соответствует очередному межледниковью. Об изменениях природной среды за последние сотни тысяч лет можно судить по материалам глубокого бурения ледников (рис. 8.8).

Наиболее примечательный факт в развитии природы за последние миллионы лет - появление человека. Человек относится к семействугоминид и в настоящее время является единственным видом этого семейства. Дифференциация гоминид и обезьян произошла еще волигоцене. Самый ранний известный представитель гоминид -миоценовый рамапитек, его останки были найдены в Восточной Африке, Южной и Восточной Азии. Следующее звено эволюции -плиоценовый австралопитек, находки которого датируются временем от 5 до 1,75 млн лет. Это был предшественник человека.

В плейстоцене появились архантропы (питекантроп, синантроп и др.), принадлежавшие уже к роду человека. Древнейший период в развитии человечества, когда орудия труда и оружие изготовлялись из камня, дерева и кости, называетсякаменным веком. Он продолжался весь плейстоцен и часть голоцена. Человек в этот период своего существования фактически был одним из компонентов биоценоза, мало отличаясь по характеру поведения и воздейтвия на среду обитания от животных: он занимался собиранием растительной пищи, охотился на животных.

Рис. 8.8. Содержание парниковых газов и отклонение палеотемпературы Т от ее современного значения в керне из скважины со станции «Восток» (по данным изотопно-водородного состава льда за последние 160 тыс. лет). Для кривых СО 2 и СН 4 показан разброс данных (В.М.Котляков, 2000)

Ранний палеолит (более 350-400 тыс. лет назад) был временем существования поздних архантропов. Около 350 тыс. лет назад они сменилисьпалеоантропами, илинеандертальцами, широко расселившимися по суше. В это время появились жилища из деревьев и костей, построенные на открытых пространствах, а также распространились ритуальные действия.

На рубеже среднего и позднего палеолита (30-40 тыс. лет назад) появились неоантропы (кроманьонцы), морфологически близкие к современному человеку. Некоторое время кроманьонцы существовали параллельно с палеоантропами. В этот период возникает первая общественно-экономическая формация -первобытно-общинный строй. Способы хозяйствования усложняются: к собиранию растений и охоте на крупных животных добавляются строительство жилищ, использование домашних животных, рыбная ловля, изготовление одежды. В этот период возникло изобразительное искусство. Новейшие археологические раскопки свидетельствуют о более сложной картине развития человека - совместного нахождения неандертальцев и кроманьонцев. Вполне возможно, что последовательность развития человеческого рода, устанавливаемая по одиночным находкам в разных частях мира, характеризует не только временную смену форм, но и отражает их пространственные различия.

Около 10 тыс. лет назад палеолит сменился мезолитом - культурой с еще более сложным хозяйством: появились поселения и человек начал реальное вторжение в географическую среду, постепенно превращая ее из чисто природной в природно-антропогенную.

Примерно 6-4 тыс. лет назад наступил неолит, важнейшей особенностью которого стал переход к оседлому образу жизни и совершенствование отношений человека и общества с природой.

Около 4-2 тыс. лет до н.э. каменный век сменился бронзовым. Широкое распространение получили разведение домашнего скота и земледелие, оказавшие сильное воздействие на природную среду. Обычно применялось подсечно-огневое земледелие: лес выжигался, чтобы освободить место для пашни. В течение нескольких лет после этого естественное плодородие земельного участка истощалось и землю забрасывали, освобождая от леса следующий участок.

В железном веке (2 тыс. лет до н.э.) появляются разнообразные ремесла, связанные с использованием железа, развивается техника, усиливается разделение труда. Первобытно-общинный строй во многих регионах мира вытесняется классовым обществом. Быстро растет численность населения, которая к началу новой эры достигает 200 млн человек. Биологическая эволюция человека перестает быть главной, а ведущее значение приобретает эволюция социальная, связанная с развитием общественных отношений, техники, науки, культуры. Непосредственная зависимость человека от стихийных сил природы уменьшается.

Воздействие человека приводит к перестройке природных ландшафтов: сокращаются площади лесов, увеличиваются пашни и пастбища, появляется орошаемое земледелие, создаются каналы и водохранилища. Особенно возрастает его влияние в XVIII-XIXвв., при переходе к капиталистическим формам хозяйствования. К концуXXв. воздействие человека на природную среду в ряде случаев оказывается сопоставимым с действием естественных процессов и явлений, а по негативным последствиям даже превосходит его. Человек, по выражению В.И.Вернадского, становится геологической (планетарной) силой. Но при этом необходимо помнить, что Вернадский в 1942 г. писал буквально следующее: «Геологическая роль человека выявляется его разумом и его техникой и может быть рассматриваема как все более и более созидательное изменение им окружающей природы». Геологической силой в таком понимании человек до сих пор не стал. Значительный «вклад» людей в окружающую его географическую среду чаще всего носит локальный и реже региональный характер. В глобальном масштабе процессы и явления контролируются естественными силами планеты.

Таким образом, анализ событий позволяет выявить главную закономерность: на протяжении геологической истории Земли наблюдается направленное необратимое изменение географической оболочки. Оно выражается в качественном преобразовании и усложнении ее составных частей: переходе от относительно однообразной жизни к многообразным формам, завершившимся антропогенезом, движении от примитивно-пустынных скалистых ландшафтов к целому спектру ландшафтных зон - разнотемпературных и разноувлажненных, развивающихся на различных высотах и глубинах и охвативших практически все континенты и океаны. Направленное изменение земной коры и рельефа выражалось в увеличении площади платформ, разнообразии строения складчатых зон, возрастании скорости осадкообразования из-за расчлененности рельефа и мощности осадочной оболочки, повышении контрастности рельефа (увеличение высоты континентов и глубины океанических впадин). Географическая оболочка становилась все более сложной и многоликой.

Для географической оболочки характерны также неравномерность развития,периодичность, цикличность иметахронность процессов. Необходимо особо подчеркнуть, что представления о поступательном эволюционном характере развития окружающей нас природы не вполне правильны. Естественные процессы и явления развиваются ритмично, но неравномерно во времени и пространстве, они изменчивы в качественных проявлениях и количественных характеристиках, они то усиливают друг друга, совпадая по конечным результатам своей деятельности, то, наоборот, уничтожают или нивелируют действия друг друга. В результате ход развития Земли и ее оболочек носитпрерывисто-непрерывный характер, который можно назвать эволюционно-революционным прогрессивно направленным на усложнение и совершенствование географической оболочки. В геологической истории нашей планеты выделяются периоды скачкообразных «усилений» и «падений» развития как среди неживой, так и живой природы. Это известные времена расцвета и вымирания организмов, тектонические затишья и периоды активизации земных недр, чередования холодных и теплых эпох, трансгрессий и регрессий и многое другое. Колебательный тип изменений географической оболочки и ее отдельных компонентов происходит на фоне совершенствования географического пространства, а пилообразный характер изменения биоразнообразия - на фоне увеличивающегося количества выживаемых родов и семейств организмов. Таким образом, естественный ход развития нашей планеты пока носит прогрессивный характер, обеспечивающий жизнедеятельность возрастающего многообразия ландшафтов. Трудности функционирования связаны исключительно с социальными аспектами. Так, высказывания о перенаселенности планеты и невозможности прокормить еще один миллиард жителей опираются не на реальные возможности природы Земли, а на желание определенного круга населения. Если речь вести не об избыточном обеспечении жизни, а о биологически и социально допустимом, то продолжающийся рост рождаемости в целом есть свидетельство расцвета географической системы. Природа способна сама регулировать многие процессы и явления, и увеличение рождаемости или популяций организмов есть прямое свидетельство прогресса в развитии.

Географическая оболочка развивается под влиянием разных сил. Внешние силы (солнечная радиация, космические поля и др.) хотя и не оставались неизменными, но все же не менялись направленно (а если и направленно, то в несравнимо ином масштабе времени), поэтому они не могли вызвать направленного развития природы земной поверхности. Направленный характер имело развитие планеты как космического тела (и вместе с ним геотектоническое развитие), что и определило многие закономерности географической оболочки. Большую роль при этом сыграло развитие живых организмов и формирование биосферы.

Немаловажное значение имеет и собственная организация географической оболочки. Возникновение и характер атмосферной и океанической циркуляции, закономерности тепло- и влагообмена, динамики ледников, осадконакопления и многие другие явления обусловливают перемещения огромных масс вещества и формирование геохимической обстановки и ландшафтной структуры.

Эти новообразования в свою очередь становятся факторами последующей эволюции, которая происходит по пути дальнейшего усложнения структуры и процессов в общем направлении от хаоса к порядку.

Специфическую эволюционную роль играют человечество и его деятельность, нацеленная на формирование территориальной и функциональной структуры хозяйства, «пронизывающей» природную среду и оказывающей на нее все большее (нередко разрушающее) влияние. Большое значение имеет культура, которая определяет отношения человека и природы, устанавливает систему человеческих ценностей, и определенных традиций.

— это совокупность всех форм земной поверхности. Они могут быть горизонтальными, наклонными, выпуклыми, вогнутыми, сложными.

Разница высот между самой высокой вершиной на суше, горой Джомолунгмой в Гималаях (8848 м), и Марианской впадиной в Тихом океане (11 022 м) составляет 19 870 м.

Как же формировался рельеф нашей планеты? В истории Земли выделяют два основных этапа ее формирования:

  • планетарный (5,5-5,0 млн лет назад), который завершился формированием планеты, образованием ядра и мантии Земли;
  • геологический , который начался 4,5 млн лет назад и продолжается до сих пор. Именно на этом этапе произошло образование земной коры.

Источником информации о развитии Земли в течение геологического этапа прежде всего являются осадочные горные породы, которые в подавляющем большинстве сформировались в водной среде и поэтому залегают слоями. Чем глубже от земной поверхности лежит слой, тем раньше он образовался и, следовательно, является более древним по отношению к любому слою, который расположен ближе к поверхности и является более молодым. На этом простом рассуждении основывается понятие относительного возраста горных пород , которое легло в основу построения геохронологической таблицы (табл. 1).

Самые длительные временные интервалы в геохронологии — зоны (от греч. aion - век, эпоха). Выделяют такие Зоны, как: криптозой (от греч. cryptos - скрытый и zoe — жизнь), охватывающий весь докембрий, в отложениях которого нет остатков скелетной фауны; фанерозой (от греч. phaneros - явный, zoe — жизнь) — от начала кембрия до нашего времени, с богатой органической жизнью, в том числе скелетной фауной. Зоны не равноценны по продолжительности, так, если криптозой длился 3-5 млрд лет, то фанерозой — 0,57 млрд лет.

Таблица 1. Геохронологическая таблица

Эра. буквенное обозначение, продолжительность

Основные этапы развития жизни

Периоды, буквенное обозначение, продолжительность

Главнейшие геологические события. Облик земной поверхности

Наиболее распространенные полезные ископаемые

Кайнозойская, KZ, около 70 млн лет

Господство покрытосеменных. Расцвет фауны млекопитающих. Существование природных зон, близких к современным, при неоднократных смещениях границ

Четвертичный, или антропогеновый, Q, 2 млн лет

Общее поднятие территории. Неоднократные оледенения. Появление человека

Торф. Россыпные месторождения золота, алмазов, драгоценных камней

Неогеновый, N, 25 млн лет

Возникновение молодых гор в областях кайнозойской складчатости. Возрождение гор в областях всех древних складчатостей. Господство покрытосеменных (цветковых) растений

Бурые угли, нефть, янтарь

Палеогеновый, Р, 41 млн лет

Разрушение мезозойских гор. Широкое распространение цветковых растений, развитие птиц и млекопитающих

Фосфориты, бурые угли, бокситы

Мезозойская, MZ, 165 млн лет

Меловой, К, 70 млн лет

Возникновение молодых гор в областях мезозойской складчатости. Вымирание гигантских пресмыкающихся (рептилий). Развитие птиц и млекопитающих

Нефть, горючие сланцы, мел, уголь, фосфориты

Юрский, J, 50 млн лет

Образование современных океанов. Жаркий, влажный климат. Расцвет рептилий. Господство голосеменных растений. Появление примитивных птиц

Каменные угли, нефть, фосфориты

Триасовый, T, 45 млн лет

Наибольшее за всю историю Земли отступание моря и поднятие материков. Разрушение домезозойских гор. Обширные пустыни. Первые млекопитающие

Каменные соли

Палеозойская, PZ, 330 млн лет

Расцвет папоротников и других споровых растений. Время рыб и земноводных

Пермский, Р, 45 млн лет

Возникновение молодых гор в областях герцинской складчатости. Сухой климат. Возникновение голосеменных растений

Каменные и калийные соли, гипс

Каменноугольный (карбон), С, 65 млн лет

Широкое распространение заболоченных низменностей. Жаркий, влажный климат. Развитие лесов из древовидных папоротников, хвощей и плаунов. Первые рептилии. Расцвет земноводных

Обилие углей и нефти

Девонский, D, 55 млн лег

Уменьшение плошали морей. Жаркий климат. Первые пустыни. Появление земноводных. Многочисленные рыбы

Соли, нефть

Появление на Земле животных и растений

Силурийский, S, 35 млн лет

Возникновение молодых гор в областях каледонской складчатости. Первые наземные растения

Ордовикский, О, 60 млн лет

Уменьшение площади морских бассейнов. Появление первых наземных беспозвоночных животных

Кембрийский, Е, 70 млн лет

Возникновение молодых гор в областях байкальской складчатости. Затопление обширных пространств морями. Расцвет морских беспозвоночных животных

Каменная соль, гипс, фосфориты

Протерозойская, PR. около 2000 млн лет

Зарождение жизни в воде. Время бактерий и водорослей

Начало байкальской складчатости. Мощный вулканизм. Время бактерий и водорослей

Огромные запасы железных руд, слюда, графит

Архейская, AR. более 1000 млн лет

Древнейшие складчатости. Напряженная вулканическая деятельность. Время примитивных бактерий

Железные руды

Зоны делятся на эры. В криптозое различают архейскую (от греч. archaios — изначальный, древнейший, aion - век, эпоха) и протерозойскую (от греч. proteros - более ранний,zoe — жизнь) эры; в фанерозое - палеозойскую (от греч. древний и жизнь), мезозойскую (от греч. теsos - средний,zoe — жизнь) и кайнозойскую (от греч. kainos - новый,zoe — жизнь).

Эры разделены на менее длительные отрезки времени - периоды , установленные лишь для фанерозоя (см. табл. 1).

Основные этапы развития географической оболочки

Географическая оболочка прошла долгий и сложный путь развития. В се развитии выделяют три качественно различных этапа: добиогенный, биогенный, антропогенный.

Добиогенный этап (4 млрд — 570 млн лет) — самый длительный период. В это время происходил процесс увеличения мощности и усложнения состава земной коры. К концу архея (2,6 млрд лет назад) на обширных пространствах уже сформировалась континентальная кора мощностью около 30 км, а в раннем протерозое произошло обособление протоплатформ и протогеосинклиналей. В этот период гидросфера уже существовала, но объем воды в ней был меньше, чем сейчас. Из океанов (и то лишь к концу раннего протерозоя) оформился один. Вода в нем была соленой и уровень солености скорее всего был примерно таким, как сейчас. Но, по-видимому, в водах древнего океана преобладание натрия над калием было еще большим, чем сейчас, больше было и ионов магния, что связано с составом первичной земной коры, продукты выветривания которой сносились в океан.

Атмосфера Земли на этом этапе развития содержала очень мало кислорода, озоновый экран отсутствовал.

Жизнь, скорее всего, существовала с самого начала этого этапа. По косвенным данным, микроорганизмы обитали уже 3,8-3,9 млрд лет назад. Обнаруженные остатки простейших организмов имеют возраст 3,5- 3,6 млрд лет. Однако органическая жизнь с момента зарождения и до самого конца протерозоя не играла ведущей, определяющей роли в развитии географической оболочки. Кроме того, многими учеными отрицается присутствие органической жизни на суше на этом этапе.

Эволюция органической жизни в добиогенный этап протекала медленно, но тем не менее 650-570 млн лет назад жизнь в океанах была достаточно богатой.

Биогенный этап (570 млн — 40 тыс. лег) длился в течение палеозоя, мезозоя и почти всего кайнозоя, за исключением последних 40 тыс. лет.

Эволюция живых организмов на протяжении биогенного этапа не была плавной: эпохи сравнительно спокойной эволюции сменялись периодами быстрых и глубоких преобразований, во время которых вымирали одни формы флоры и фауны и получали широкое распространение другие.

Одновременно с появлением наземных живых организмов стали формироваться почвы в нашем современном представлении.

Антропогенный этап начался 40 тыс. лет назад и продолжается в наши дни. Хотя человек как биологический род появился 2-3 млн лег назад, его воздействие на природу длительное время оставалось крайне ограниченным. С появлением человека разумного это воздействие значительно усилилось. Произошло это 38-40 тыс. лет назад. Отсюда и берет отсчет антропогенный этап в развитии географической оболочки.

Известно, что географическая оболочка представляет собой самый крупный природный элемент. Это комплексная оболочка земного шара, в которой взаимодействуют литосфера, биосфера, гидросфера и атмосфера. Границы географической оболочки совпадают с биосферой.

Целостность географической оболочки определяется взаимным проникновением друг в друга газовой, минеральной, водной и живых оболочек и их взаимодействием. Выделяют метахронность развития географической оболочки, которая была проявлена в ходе ее эволюции.

Этот принцип хорошо виден в развитии оболочки на примере развития биострома и эволюции человека. Есть множество методологических положений, которые относятся к изучению закономерности развития географический оболочки Земли. Это ее эволюционные свойства: унаследование, транзитивность, изменчивость и инерционность.

Этапы развития географической оболочки

Географическая оболочка формировалась на протяжении длительного времени, поэтому ее строение и состав постоянно усложнялись и преобразовывались. Выделяют три основных этапа в развитии географической оболочки - это добиогенный, биогенный и антропогенный.

Взаимосвязь атмосферы, литосферы, биосферы и гидросферы посредством круговорота энергии и веществ определяет нынешнюю целостность географической оболочки. Ей присуща зональность, которая усложнялась и формировалась одновременно с развитием биосферы, являющейся элементом географической оболочки.

Зачастую выделяют такие характерные закономерности и особенности географической оболочки, как ритмичность различных природных явлений и процессов. Среди них уже выделяют различные ритмы - астрономические, солнечные, суточные и геологические.

При помощи сравнения разновременных состояний географической оболочки удается установить структуру ее изменения. Это направленные, необратимые преобразования, которые могут скачкообразно или плавно приводить к усложнению структуры географической оболочки, к увеличению ее разнообразия и сложности географических процессов и явлений, что постоянно происходят в ней.

Это и представляет собой ее развитие. Этот сложный, порой противоречивый процесс, конечный итог которого приводит к тому, что количественные изменения способствуют качественным скачкам. Именно развитие географической оболочки способствовало появлению литосферы, атмосферы, гидросферы и биосферы, они были сформированы, как новые качественные структуры.

Так как взаимодействует внешняя - солнечная - энергия и внутриземная энергии, и это является энергетической основой изменения географической оболочки, то именно они организуют определенные закономерности в развитии ее процессов и явлений.

Поэтому о географической оболочке говорят, как о ступени развития планеты Земля. Предпосылкой возникновения и дальнейшего развития жизни стал именно географический уровень организации подобных природных систем.

Лекция 8. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ

Наименование параметра Значение
Тема статьи: Лекция 8. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ
Рубрика (тематическая категория) География

Каждый химический элемент, совершая круговорот в экосистеме, следует по своему особому пути, но всœе круговороты приводятся в движение энергией, и участвующие в них элементы попеременно переходят из органической формы в неорганическую и обратно.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, важнейшее свойство потоков в экосистемах - их цикличность. Вещества в экосистемах совершают практически полный круговорот, попадая сначала в организмы, затем в абиотическую среду и вновь возвращаясь в организмы, но часто в иных количествах и состояниях. Между круговоротами элементов существует тесная связь

Особенностью биогеохимических круговоротов является то, что в них участвуют не только биогенные элементы, но и посторонние, в т.ч. многие загрязняющие вещества (поллютанты) .

Географическая оболочка направленно развивается во времени. При этом ей свойственны ритмические колебания, при которых состояния геосистем периодически (с большей или меньшей правильностью в чередовании ритмов) повторяются .

Понятие о ритмах. Ритмическими процессами (ритмикой) называют повторяющиеся во времени явления, которые каждый раз развиваются в одном направлении. Это одна из закономерностей существования и развития географической оболочки, проявляющаяся в изменчивости всœех процессов. Выделяют два вида ритмических движений: периодические и циклические.

Под периодами понимают ритмы одинаковой длительности (к примеру, время оборота Земли вокруг оси или период обращения ее вокруг Солнца). Ритмы различной продолжительности именуют циклами .

Классификация ритмических движений. Колебания параметров, характеризующих свойства геосфер, обусловлены многими причинами. При их классификации удобно исходить из длительности географических процессов, изменчивость которых определяется соответствующими пространственно-временными масштабами. Среди колебаний обнаруживается достаточно циклов, продолжительность которых варьирует от нескольких сотен миллионов лет (гигациклы) до периодов случайных флуктуации длительностью в минуты, секунды и их доли .

Геологические циклы - самая крупная единица установленной периодичности. Οʜᴎ отразились в смене режимов осадконакопления, вулканизма и магматизма, эпохах расчленения и выравнивания рельефа, периодах формирования кор выветривания и элювиальных образований, в чередовании морских трансгрессий и регрессий, ледниковий и межледниковий, в изменении климата планеты и содержании атмосферных газов .

Сверхвековые ритмы. Продолжительность сверхвековой ритмики составляет от нескольких сотен до нескольких тысяч лет. Особенно хорошо выражен ритм продолжительностью 1800- 1900 лет (к примеру, смена влажного и засушливого климата Сахары). Согласно А. В. Шнитникову, в каждом цикле длительностью 1850 лет есть три фазы: трансгрессивная (фаза прохладно-влажного климата), развивающаяся весьма быстро и энергично, но относительно короткая - 300 - 500 лет; регрессивная (фаза сухого и теплого климата) продолжительностью 600-800 лет, которая протекает медленно и вяло; переходная, охватывающая промежуток в 700-800 лет.

Внутривековые ритмы. Многие исследователи (Г.Ф. Лунгерсгаузен, Е.В.Максимов, М.М.Ермолаев и др.) считают, что большинство наблюдаемых в природе внутривековых ритмов имеет космическое происхождение, поскольку обнаружена связь с ритмами Солнца и отдельных небесных тел. Для годовых колебаний системы атмосфера-океан-суша выделœены следующие циклы, каждый из которых имеет свою природу: 111 лет, 80-90 лет, 44 года, 35-40 лет, 22 года, 19 лет, 11 лет, 6-7 лет, 3-4 года, 2 года .

Э.А. Брюкнер в 1890 ᴦ. установил, что почти везде на земном шаре климат испытывает циклические колебания со средней продолжительностью одного цикла около 30-35 лет. За это время серия влажных и прохладных лет сменяется серией теплых и сухих. По другим данным (уровень озер, водоносность рек и горных ледников, ледовитость, температура воздуха и др.), продолжительность ритмов может колебаться от 20 до 45 лет .

Сейсмическая активность Земли также носит ритмический характер при средней продолжительности ритмов в 22 -23 года.

Эль-Ниньо - аномальное продвижение теплых экваториальных вод южной ветви Межпассатного противотечения далеко на юг вдоль побережья Южной Америки при ослаблении юго-восточного пассата. Такие вторжения теплых вод резко меняют океанологические и метеорологические условия в прибрежных районах Перу и Чили и приводят к массовой гибели холоднолюбивых промысловых рыб, катастрофическим ливням и штормам большой силы Моменты (фазы) наступления Эль-Ниньо различны, но отмечена периодичность в 2, 4-5 и 8 лет .

При изучении этой проблемы совместно рассматриваются колебания атмосферы, называемые Южным колебанием, колебания океана, регистрируемые по его теплым фазам Эль-Ниньо и холодным - Ла-Нинья, и колебания Земли, проявляющиеся через изменения скорости ее вращения и нутацию географических полюсов. Хронология фаз Эль-Ниньо и Ла-Нинья приведены в табл 7.6. Отмеченные эффекты отражаются далеко за пределами Тихого океана и омываемых им территорий .

Нестабильность вращения Земли (изменения скорости ее вращения и колебания земной оси) порождает в океане и атмосфере полюсной прилив, который в свою очередь влияет на движения атмосферы и океана и протекающие в них процессы. Его амплитуда в океане составляет 0,5 см и зависит от величины смещения полюса .

Внутригодовая, или сезонная, ритмика проявляется в смене времен года, ходе климатических элементов, гидрологических явлениях (ледостав, ледоход, половодье), почвообразовательных и геоморфологических процессах (усиление речных врезов при увеличении расходов воды в паводки и половодья и их затишье в межень, активизация термокарста летом и его замирание зимой, изменение величины плоскостной и почвенной эрозии в разные времена года) и др.
Размещено на реф.рф
Внутримесячная ритмика, связанная с изменчивостью периода обращения Солнца, изменением фаз и склонений Луны, обусловливает соответствующие колебания атмосферных, гидрологических и биологических процессов. Внутримесячные колебания скорости вращения Земли обнаруживают периодичность в 27, 14 и 9 суток.

Внутрисуточная ритмика проявляется в изменении всœех гидрометеорологических параметров (температуры, влажности, атмосферного давления), приливо-отливных явлениях, фотосинтезе, биологической активности животных и др.
Размещено на реф.рф
Нагревание горных пород днем и остывание их ночью создает суточный ритм физического выветривания. Такой же ритм присущ и процессам почвообразования
.

Историю Земли подразделяют на два этапа (зона): криптозой (время скрытой жизни) и фанерозой (время явной жизни).

Фанерозой довольно хорошо изучен и на основании палеонтологических материалов, подтвержденных данными других методов, подразделœен на эры, периоды и эпохи (табл. 8.1).

Криптозой изучен слабо, особенно его ранние этапы. Общепринято делœение криптозоя на протерозой и архей. Время между возникновением планеты и образованием известных ныне горных пород определяют как катархей .

Фактологических данных о начальном этапе становления географической оболочки практически нет. Несомненно, что земные процессы и явления того времени происходили в условиях интенсивного космического энергетического воздействия, а также бомбардировки метеоритами и другими телами, которые относительно легко достигали земной поверхности при отсутствии значительной атмосферы. Количество твердых разноразмерных объектов в окружающем пространстве было еще значительным из-за неполной упорядоченности вещества допланетного облака. Земля как самостоятельная планета образовалась 4,5-4,7 млрд лет назад.

Предполагается, что в катархее и раннем архее вулканогенные горные породы, вероятно, основного (базальтового) состава создали первичную земную кору, закрывшую ультраосновную перидотитовую корку аккрецированной планеты со следами многочисленных метеоритных бомбардировок. Конденсация жидкостей из горячих паров скорее всœего происходила вблизи земной поверхности и в толщах эффузивных образований, представленных чаще всœего лавами, лаво-брекчиями и пеплами.

очевидно существование в природе двух принципиально различных типов вещества: минœерального атомарно-кристаллического и живого атомарно-организменного. Коренные различия в биологической активности, даже химически одинаковых соединœений, свидетельствует об их принципиальной индивидуальности и невозможности перехода минœеральных неорганических и органических веществ в биоорганические живые вещества. По этой причине не следует искать на Земле следы начала жизни. Жизнь вечна и имеет свои особые формы существования.

Реконструкция состава литосферы. Наиболее древние из обнаруженных горных пород с возрастами 3,8-4,1 млрд лет известны лишь в нескольких местах: запад Австралии, юг Африки, восток Южной Америки, северо-восток Северной Америки и юг Гренландии, центр и юго-восток Азии, восток Европы и Антарктида. Наиболее типичными формированиями являются ʼʼсерые гнейсыʼʼ, местами подстилаемые ʼʼрозовыми гнейсамиʼʼ, или гранулитами, с залегающими на них осадочно-вулканогенными отложениями.

Последние хорошо изучены в разрезах юга Гренландии, где они представлены серией Исуа, которая сложена амфиболитами, кремнистыми и карбонатными сланцами с прослоями обломков, полосчатыми желœезистыми кварцитами с точечными вкраплениями округлых образований окисленного желœеза, конгломератами с гальками кварцитов, карбонатно-кремнистыми и карбонатными породами. Абсолютный возраст пород серии Исуа и подстилающих их гнейсов составляет 3,8 - 3,7 млрд лет.

Результаты анализа отложений позволяют с разной степенью достоверности утверждать:

·наличие в это время на поверхности планеты воды;

·развитие эрозионно-денудационной деятельности на суше, поставлявшей обломочный материал в водоемы;

·существование разных химических условий осадконакопления, из-за чего сменялось накопление желœезистых, карбонатных или кремнистых осадков;

·появление свободного кислорода, о чем свидетельствуют округлые выделœения окисленного желœеза, что некоторыми исследователями связывается с присутствием фотосинтезирующих организмов;

·вкрапления бывают остатками первичных организмов гетерогенного типа, названных исуасферами;

·наличие остатков живых организмов требует признания более раннего существования автотрофной жизни;

·начало осадконакопления, видимо, происходило одновременно с остыванием формирующейся земной коры и изменением горных пород (метаморфизмом);

·произошла смена состава атмосферы - окончательно исчезла остаточная и возникала первичная земная углекислого состава, что подтверждается химизмом горных пород, изменением степени метаморфизма, спецификой жизнедеятельности;

·к моменту начала накопления осадков на Земле уже существовала жизнь в достаточно развитой форме.

О наличии жизнедеятельности уже на первых порах развития земной коры свидетельствует факт установления в породах черно-сланцевой формации углерода биоорганического происхождения. Предполагают, что уже 3,2-3,5 млрд лет назад при образовании мощных (до нескольких сотен метров) толщ углистых сланцев почти половина слагающего их углерода возникла за счёт гибели живых организмов и углефикации их вещества. Трудно представить крайне важно е количество микроорганизмов с массой в сотые и тысячные доли грамма, но то, что окружающая среда позволяла им осуществлять активную деятельность, несомненно. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, еще раз хочется отметить прозорливость В. И. Вернадского и согласиться с его выводом о том, что исследование земного материала не указывает на наличие такого времени, когда не было живого вещества. В геологическом смысле жизнь вечна.

Реконструкции состава атмосферы. Очевидно, что первичная атмосфера, вначале постепенно, а затем относительно быстро (в геологическом масштабе времени) стала замещаться вторичной, где уже преобладали азот и кислород в свободном состоянии. С начала фанерозоя (570 млн лет назад) до середины девонского периода концентрация кислорода составляла меньше половины современной (рис. 8.3). В конце девона - карбоне - вероятно, в связи с интенсивным вулканизмом и бурным развитием наземной растительности, содержание кислорода резко увеличилось, превысив даже современный уровень. На протяжении позднего палеозоя наблюдается снижение содержания О2, достигшее минимума на границе перми и триаса. В начале юрского периода отмечено его резкое увеличение, превысившее современный уровень в 1,5 раза. Такая ситуация существовала до середины мела, когда произошло снижение концентрации О2до современного уровня.

Газовый состав атмосферы, гидросферы и литосферы часто считают функцией лишь жизнедеятельности организмов, главным образом процесса фотосинтеза. Но это не единственный, а подчас, видимо, и не главный источник. При дегазации недр поступают не меньшие количества различных газов, в т.ч. мантийного кислорода с иным, чем у фотосинтетического, соотношением изотопов. Сравнение содержаний кислорода и диоксида углерода в разные эпохи фанерозоя показывает их сходный характер, что не должна быть объяснено фотосинтезом, в процессе которого диоксид углерода расходуется на формирование органического вещества и при этом выделяется избыток свободного кислорода. В случае если же учесть совпадение эпох повышенных концентраций кислорода и диоксида углерода с периодами орогенеза, тектонических движений и трансформаций земных недр, то их источник становится очевидным. С течением времени в земной атмосфере происходило уменьшение количеств диоксида углерода при возрастании содержаний азота и кислорода, но процесс данный не был постепенным, а носил скачкообразный характер, обусловленный ритмичным проявлением природных процессов.

Реконструкция гидросферы. Установлено, что первичные воды были кислыми из-за активных вулканических процессов и углекислого состава атмосферы, поставлявшей основные осадки. Пресные воды появились позднее, очевидно, в результате резких климатических изменений - ледниковых периодов и межледниковых эпох (рис. 8.4 и табл. 8.2). Одним из самых спорных остается вопрос об объёме земных вод. Очевидно, что изначально не могло возникнуть такого огромного количества воды - не было источника. Вместе с тем, всœе первичные водоемы докембрия носили эпиконтинœентальный характер - это залитая водой бывшая суша. Современные материалы о строении дна океанов свидетельствуют об их возникновении только с середины мезозойского времени (180-200 млн лет). Довольно убедительны доказательства о происхождении их за счёт раздвигания земной коры по зонам рифтогенных разломов с внедрением мантийного вещества основного и ультра-основного составов и одновременным заполнением водами, как атмосферного, так и глубинного генезиса. Процесс продолжается до настоящего времени (рис. 8.5). Стоит сказать, что для некоторых океанов, к примеру Атлантического, характерно симметричное расположение пород одного возраста относительно центральной зоны срединно-океанического хребта͵ для других, к примеру, Тихого - более сложное.

Реконструкция органического мира. Быстрое развитие органического мира началось в конце протерозоя - начале палеозоя (хотя наиболее древние следы жизни почти ровесники осадочных пород). В ордовике появились первые представители позвоночных животных - панцирные рыбы. В силуре растения и животные вышли на сушу, с чем связывают увеличение содержания кислорода в атмосфере, достигшее половины его современного уровня. Произошло оформление озонового слоя, который стал защищать приповерхностные слои Земли от жесткого солнечного и космического излучения. Появление озонового слоя и его роль в жизнедеятельности организмов намного сложнее, чем обычно считается. В первую очередь, доказано, что многие организмы, особенно простейшие практически не реагируют на космическое излучение. Во-вторых, в геологических разрезах обнаружены следы достаточно развитых палеопочв с возрастами до 3,1 млрд лет, что свидетельствует о поверхностной жизнедеятельности организмов, участвующих в почвообразовательных процессах. В этой связи к приведенной схеме развития органического мира с указанием критических точек содержания кислорода следует относиться как к одному из возможных вариантов. Приведем еще одну схему некоторых базовых событии эволюции географической оболочки, показывающей фактическую идентичность понятий биосфера в широком смысле и географическая оболочка (рис.8.7).

В девоне четко оформилась дифференциация физико-географических обстановок: появились лесные, болотные и аридные ландшафты, лагунное соленакопление, возникла окислительно-восстановительная контрастность географической оболочки. С карбона стала отчетливо проявляться географическая зональность, следы которой известны еще с протерозоя.

В мезозое дифференциация и усложнение физико-географических условий продолжались. На рубеже палеозойской и мезозойской эр произошла резкая смена животного мира - началось бурное развитие пресмыкающихся (ящеров). В юре появились покрытосœеменные (цветковые) растения, а в мелу они стали господствующими. В конце мелового периода гигантские пресмыкающиеся вымерли. Возникли степи и саванны.

К мезозойской эре относятся крупные изменения в строении поверхности Земли, связанные с мощными расколами земной коры вплоть до верхней мантии, ее раздвижением и образованием океанических впадин. Возникла современная конфигурация континœентальных и океанических глыб с высотой суши до 9 км (гора Джомолунгма, 8848 м) и глубинами океана более 11 км (Марианский желоб, 11 034 м). Такой контрастный рельеф появился впервые в истории Земли, что, несомненно, сказалось на функционировании географической оболочки.

События кайнозоя оказали огромное влияние на современный облик земной поверхности. Одним из важнейших событий явилась альпийская складчатость, начавшаяся в палеогене и охватившая большие площади Альпийско-Гималайского и Тихоокеанского поясов. От неогена ведет отсчет неотектонический, или новейший, этап развития земной коры, который ознаменовался интенсивным поднятием материков: высота суши в неогене и плейстоцене увеличилась в среднем на 500 м. В геосинклинальных поясах образовались молодые горы, испытали повторные поднятия и более древние горы (Тянь-Шань, Урал, Аппалачи и др.).

Рост площади и высоты материков способствовал охлаждению земной поверхности. В Антарктиде с середины миоцена образовался ледниковый покров (в Северном полярном бассейне морские льды и ледники на прилегающей суше и островах возникли значительно позднее). Около ледниковых щитов образовались перигляциальные зоны с холодным сухим климатом и тундрово-степной растительностью.

Последний период кайнозойской эры - четвертичный - называют также антропогеновым (в связи с появлением человека) или ледниковым (в связи с усилением похолодания и распространением ледников на значительных пространствах Северной Америки и Евразии). На Русской равнинœе ледники достигали 49° с.ш., а в Северной Америке - даже 37° с. ш.

Время, когда ледники занимали большие площади, называют ледниковыми эпохами, когда отступали - межледниковыми эпохами. Современная эпоха - голоцен, наступившая около 10-12 тыс. лет назад, скорее всœего, соответствует очередному межледниковью.

Наиболее примечательный факт в развитии природы за последние миллионы лет - появление человека. Человек относится к семейству гоминид и в настоящее время является единственным видом этого семейства. Дифференциация гоминид и обезьян произошла еще в олигоцене. Самый ранний известный представитель гоминид - миоценовый рамапитек, его останки были найдены в Восточной Африке, Южной и Восточной Азии. Следующее звено эволюции - плиоценовый австралопитек, находки которого датируются временем от 5 до 1,75 млн лет. Это был предшественник человека.

В плейстоцене появились архантропы (питекантроп, синантроп и др.), принадлежавшие уже к роду человека. Древнейший период в развитии человечества, когда орудия труда и оружие изготовлялись из камня, дерева и кости, принято называть каменным веком. Он продолжался весь плейстоцен и часть голоцена.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, анализ событий позволяет выявить главную закономерность: на протяжении геологической истории Земли наблюдается направленное необратимое изменение географической оболочки.

Для географической оболочки характерны также неравномерность развития, периодичность, цикличность и метахронность процессов. Необходимо особо подчеркнуть, что представления о поступательном эволюционном характере развития окружающей нас природы не вполне правильны. В результате ход развития Земли и ее оболочек носит прерывисто-непрерывный характер, который можно назвать эволюционно-революционным прогрессивно направленным на усложнение и совершенствование географической оболочки. В геологической истории нашей планеты выделяются периоды скачкообразных ʼʼусиленийʼʼ и ʼʼпаденийʼʼ развития как среди неживой, так и живой природы. Это известные времена расцвета и вымирания организмов, тектонические затишья и периоды активизации земных недр, чередования холодных и теплых эпох, трансгрессий и регрессий и многое другое. Колебательный тип изменений географической оболочки и ее отдельных компонентов происходит на фоне совершенствования географического пространства, а пилообразный характер изменения биоразнообразия - на фоне увеличивающегося количества выживаемых родов и семейств организмов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, естественный ход развития нашей планеты пока носит прогрессивный характер, обеспечивающий жизнедеятельность возрастающего многообразия ландшафтов.

Лекция 8. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ - понятие и виды. Классификация и особенности категории "Лекция 8. ОСНОВНЫЕ ЭТАПЫ РАЗВИТИЯ ГЕОГРАФИЧЕСКОЙ ОБОЛОЧКИ" 2017, 2018.

Современная структура географической оболочки - результат очень длительной эволюции . Вее развитии принято выделять три основных этапа - добиогенный, биогенный и антропогенный (табл. 10.1).

Добиогенный этап отличался слабым участием живого вещества в развитии географической оболочки. Этот самый длительный этап продолжался первые 3 млрд лет геологической истории Земли - весь архей и протерозой. Палеонтологические исследования последних лет подтвердили идеи, высказанные еще В.И. Вернадским и Л.С. Бергом, что лишенных жизни (как их называют, азойных) эпох, по-видимому, не было в течение всего геологического времени или этот отрезок времени крайне мал. Однако этот этап можно называть добиогенным, так как органическая жизнь в это время не играла тогда определяющей роли в развитии географической оболочки.

Таблица 10.1. Этапы развития географической оболочки

Геологические

Длительность, лет

Основные события

Добиогенный

Архейская и протерозойская эры 3700-570 млн лет назад

Живые организмы принимали слабое участие в формировании географической оболочки

Биогенный

Фанерозойский зон (палеозойская, мезозойская и бблыная часть кайнозойской эры) 570 млн -

40 тыс. лет назад

Около 570 млн

Органическая жизнь - ведущий фактор в развитии географической оболочки. В конце периода появляется человек

Антропогенный

С конца кайнозойской эры до наших дней 40 тыс. лет назад - наши дни

Начало этапа совпадает с появлением современного человека (Homo sapiens). Человек начинает играть ведущую роль в развитии географической оболочки

В архейскую эру на Земле в бескислородной среде существовали самые примитивные одноклеточные организмы. В слоях Земли, образовавшихся около 3 млрд лет назад, обнаружены остатки нитей водорослей и бактериоподобных организмов. В протерозое господствовали одноклеточные и многоклеточные водоросли и бактерии, появились первые многоклеточные животные. На до- биогенном этапе развития географической оболочки в морях были накоплены мощные толщи железистых кварцитов (джеспилитов), свидетельствующих о том, что тогда верхние части земной коры были богаты соединениями железа, а атмосфера характеризовалась очень низким содержанием свободного кислорода и высоким содержанием углекислого газа.