Из чего лучше строить дом (кроме дерева), чтобы надолго и не дорого? Сравнение теплопотерь домов из разного материала

Методический материал для самостоятельного расчета толщины стен дома с примерами и теоретической частью.

Часть 1. Сопротивление теплопередаче - первичный критерий определения толщины стены

Чтобы определится с толщиной стены, которая необходима для соответствия нормам энергоэффективности, рассчитывают сопротивление теплопередаче проектируемой конструкции, согласно раздела 9 «Методика проектирования тепловой защиты зданий» СП 23-101-2004.

Сопротивление теплопередаче - это свойство материала, которое показывает, насколько способен удерживать тепло данный материал. Это удельная величина, которая показывает насколько медленно теряется тепло в ваттах при прохождении теплового потока через единичный объем при перепаде температур на стенках в 1°С. Чем выше значение данного коэффициента - тем «теплее» материал.

Все стены (несветопрозрачные ограждающие конструкции) считаются на термоспротивление по формуле:

R=δ/λ (м 2 ·°С/Вт), где:

δ - толщина материала, м;

λ - удельная теплопроводность, Вт/(м ·°С) (можно взять из паспортных данных материала либо из таблиц).

Полученную величину R общ сравнивают с табличным значением в СП 23-101-2004.

Чтобы ориентироваться на нормативный документ необходимо выполнить расчет количества тепла, необходимого для обогрева здания. Он выполняется по СП 23-101-2004, получаемая величина «градусо·сутки». Правила рекомендуют следующие соотношения.

Материал стены

Сопротивление теплопередаче (м 2 ·°С/Вт) / область применения (°С·сут)

конструкционный

теплоизоляционный

Двухслойные с наружной теплоизоляцией

Трехслойные с изоляцией в середине

С невентили- руемой атмосферной прослойкой

С вентилируемой атмосферной прослойкой

Кирпичная кладка

Пенополистирол

Минеральная вата

Керамзитобетон (гибкие связи, шпонки)

Пенополистирол

Минеральная вата

Блоки из ячеистого бетона с кирпичной облицовкой

Ячеистый бетон

Примечание. В числителе (перед чертой) - ориентировочные значения приведенного сопротивления теплопередаче наружной стены, в знаменателе (за чертой) - предельные значения градусо-суток отопительного периода, при которых может быть применена данная конструкция стены.

Полученные результаты необходимо сверить с нормами п. 5. СНиП 23-02-2003 «Тепловая защита зданий».

Также следует учитывать климатические условия зоны, где возводится здание: для разных регионов разные требования из-за разных температурных и влажностных режимов. Т.е. толщина стены из газоблока не должна быть одинаковой для приморского района, средней полосы России и крайнего севера. В первом случае необходимо будет скорректировать теплопроводность с учетом влажности (в большую сторону: повышенная влажность снижает термосопротивление), во втором - можно оставить «как есть», в третьем - обязательно учитывать, что теплопроводность материала вырастет из-за большего перепада температур.

Часть 2. Коэффициент теплопроводности материалов стен

Коэффициент теплопроводности материалов стен - эта величина, которая показывает удельную теплопроводность материала стены, т.е. сколько теряется тепла при прохождении теплового потока через условный единичный объем с разницей температур на его противоположных поверхностях в 1°С. Чем ниже значение коэффициента теплопроводности стен - тем здание получится теплее, чем выше значение - тем больше придется заложить мощности в систему отопления.

По сути, это величина обратная термическому сопротивлению, рассмотренному в части 1 настоящей статьи. Но это касается только удельных величин для идеальных условий. На реальный коэффициент теплопроводности для конкретного материала влияет ряд условий: перепад температур на стенках материала, внутренняя неоднородная структура, уровень влажности (который увеличивает уровень плотности материала, и, соответственно, повышает его теплопроводность) и многие другие факторы. Как правило, табличную теплопроводность необходимо уменьшать минимум на 24% для получения оптимальной конструкции для умеренных климатических зон.

Часть 3. Минимально допустимое значение сопротивления стен для различных климатических зон.

Минимально допустимое термосопротивление рассчитывается для анализа теплотехнических свойств проектируемой стены для различных климатических зон. Это нормируемая (базовая) величина, которая показывает, каким должно быть термосопротивление стены в зависимости от региона. Сначала вы выбираете материал для конструкции, просчитываете термосопротивление своей стены (часть 1), а потом сравниваете с табличными данными, содержащимися в СНиП 23-02-2003. В случае, если полученное значение окажется меньше установленного правилами, то необходимо либо увеличить толщину стены, либо утеплить стену теплоизоляционным слоем (например, минеральной ватой).

Согласно п. 9.1.2 СП 23-101-2004, минимально допустимое сопротивление теплопередаче R о (м 2 ·°С/Вт) ограждающей конструкции рассчитывается как

R о = R 1 + R 2 +R 3 , где:

R 1 =1/α вн, где α вн - коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, Вт/(м 2 × °С), принимаемый по таблице 7 СНиП 23-02-2003;

R 2 = 1/α внеш, где α внеш - коэффициент теплоотдачи наружной поверхности ограждающей конструкции для условий холодного периода, Вт/(м 2 × °С), принимаемый по таблице 8 СП 23-101-2004;

R 3 - общее термосопротивление, расчет которого описан в части 1 настоящей статьи.

При наличии в ограждающей конструкции прослойки, вентилируемой наружным воздухом, слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в этом расчете не учитываются. А на поверхности конструкции, обращенной в сторону вентилируемой воздухом снаружи прослойки, следует принимать коэффициент теплоотдачи α внеш равным 10,8 Вт/(м 2 ·°С).

Таблица 2. Нормируемые значения термосопротивления для стен по СНиП 23-02-2003.

Уточненные значения градусо-суток отопительного периода, указаны в таблице 4.1 справочного пособия к СНиП 23-01-99* Москва, 2006.

Часть 4. Расчет минимально допустимой толщины стены на примере газобетона для Московской области.

Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ - толщина стены, λ - теплопроводность материала, а R - норма теплосопротивления по СНиП.

Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.

  1. Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: R req = 0,00035·5400 + 1,4 = 3,29 м 2 °C/Вт
  2. Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
  3. Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.

Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм, либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.

Материал

Толщина стены, м

проводность,

Керамзитоблоки

Для строительства несущих стен используют марку не менее D400.

Шлакоблоки

Силикатный кирпич

Газосиликатные блоки d500

Использую марку от D400 и выше для домостроения

Пеноблок

строительство только каркасным способом

Ячеистый бетон

Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен.

Минимальный размер стен для каркасных сооружений

Кирпич керамический полнотелый

Песко-бетонные блоки

При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха.

Часть 5. Принцип определения значения сопротивления теплопередачи в многослойной стене.

Если вы планируете построить стену из нескольких видов материала (например, строительный камень+минеральный утеплитель+штукатурка), то R рассчитывается для каждого вида материала отдельно (по этой же формуле), а потом суммируется:

R общ = R 1 + R 2 +…+ R n + R a.l где:

R 1 -R n - термосопротивления различных слоев

R a.l - сопротивление замкнутой воздушной прослойки, если она присутствует в конструкции (табличные значения берутся в СП 23-101-2004, п. 9, табл. 7)

Пример расчета толщины минераловатного утеплителя для многослойной стены (шлакоблок - 400 мм, минеральная вата - ? мм, облицовочный кирпич - 120 мм) при значении сопротивления теплопередаче 3,4 м 2 *Град С/Вт (г. Оренбург).

R=Rшлакоблок+Rкирпич+Rвата=3,4

Rшлакоблок = δ/λ = 0,4/0,45 = 0,89 м 2 ×°С/Вт

Rкирпич = δ/λ = 0,12/0,6 = 0,2 м 2 ×°С/Вт

Rшлакоблок+Rкирпич=0,89+0,2 = 1,09 м 2 ×°С/Вт (<3,4).

Rвата=R-(Rшлакоблок+Rкирпич) =3.4-1,09=2,31 м 2 ×°С/Вт

δвата=Rвата·λ=2,31*0,045=0,1 м=100 мм (принимаем λ=0,045 Вт/(м×°С) - среднее значение теплопроводности для минеральной ваты различных видов).

Вывод: для соблюдения требований по сопротивлению теплопередачи можно использовать керамзитобетонные блоки в качестве основной конструкции с облицовкой ее керамическим кирпичом и прослойкой из минеральной ваты теплопроводностью не менее 0,45 и толщиной от 100 мм.

Вопросы и ответы по теме

По материалу пока еще не задан ни один вопрос, у вас есть возможность сделать это первым

Сегодня рассмотрим из какого материала окна имеют наибольшую теплосберегаемость.

С этой статьи начинаем серию статей в новом подразделе «Как выбрать окно».

Они помогут вам выделить из всего разнообразия видов окон , то которое больше всего подойдет по свойствам и по ценам в вашем случае.

Рассмотрим теплосберегающие свойства 3-х материалов из которых больше всего производят окна на сегодняшний момент.

Теплосбережение окон из:

ПВХ

Дерева

Алюминия

Теплосбережение ПВХ

Теплосбережение окон из ПВХ зависит в большей степени не от структуры самого пластика, а от типа стеклопакета — точнее от количества камер в нем. Они бывают разного колличества обычно от 1 до 5-и.Все зависит от специфики помещения, от климата где вы живете.

Теплопроводность окон из ПВХ зависит еще и от армирования, с металлическим армированием теплопроводность увеличивается.

Средний показатель теплопроводности без армирования окон из ПВХ составляет 0.15 Вт/м°С, а оконный профиль с армированием коэффициент теплопроводности имеет 1.4-1.9 Вт/м°С

Теплосбережение окон из дерева

В отличие от окон ПВХ, деревянные окна обладают уникальной способностью обновлять воздух в помещении. С деревянными окнами происходит воздухообмен, что весьма полезно для жителей.

В какой те степени за счет этого обмена происходит не значительная потеря тепла. А так для дерева, которая еще не в конструкции окна, теплопроводность очень низкая и составляет 0.28 Вт/м°С.

2003 год стал своеобразным водоразделом для любой строительной компании: введение в действие нового СНиП 23-02-2003 «Тепловая защита зданий» сделало невозможным строительство загородных коттеджей по тем технологиям, которые были приняты ранее.

Новые требования: ищем решения в пределах разумного

Требования к основному параметру, характеризующему суммарные теплоизоляционные свойства строительных материалов – сопротивление теплопередаче – теперь стали гораздо жестче. Само по себе появление нового СНиПа было ожидаемо: в СССР топливо на внутреннем рынке было достаточно дешево, на отоплении жилых домов экономить было не принято. Современные нормы по теплосбережению ни много, ни мало – в четыре раза жестче предыдущих!

Что это означает на практике?

Большинство зданий старой постройки у нас в стране имеют толщину в 2,5 кирпича (как правило, это был керамический или силикатный полнотелый кирпич), то есть около 60 см. Согласно новым правилам расчетное сопротивление теплопередачи стен (R), равное сумме теплового сопротивления всех материалов в Москве и Московской области, должно быть не меньше 3.16 м*°C / Вт. Сопротивление теплопередаче кирпичной стены есть не что иное, как ее толщина поделенная на коэффициент теплопроводности кирпича. У разных производителей коэффициент теплопроводности, разумеется, отличается, однако в среднем находится в пределах 0,55-0,65 Вт / °C, а значит толщина кирпичной стены по новым нормативам должна быть около двух метров. Разумеется, возведение такой цитадели нельзя назвать строительством загородного дома. Как решить возникшую проблему?

Утепляемся

Этот способ использовался при строительстве коттеджей в Москве задолго до того, как ввели новые стандарты теплосбережения: стандарты-стандартами, а в частном доме, в отличие от типовой многоэтажки, некому жаловаться на холод, кроме как самому себе. В качестве утеплителей традиционно использовался пенополистирол (пенопласт) или минеральная вата. Коэффициент теплопроводности этих двух материалов более чем в 10 раз меньше, чем у кирпича – в пределах 0,4-0,45 Вт / °C, то есть если бы мы строили дом из пенопласта, то достаточно бы было стен 12-сантиметровой толщины. Таким образом, вопрос лишь в прочности возводимого здания, которую и должна обеспечить толщина стен. А тепловую защиту обеспечит бутерброд из утеплителя и облицовки.

Строим по-новому из новых материалов

Нельзя сказать, что именно с 2003-го года начался бум новых строительных материалов, однако с этого момент спрос на них при строительстве коттеджей под ключ, несомненно, возрос. В самом деле – кирпич сам по себе весьма недешевый, применение утеплителя потребует дополнительной внешней облицовки, а значит и дополнительных расходов на лицевой кирпич. Весьма здравой кажется идея отказаться от кирпича в пользу материалов с меньшим коэффициентом теплопроводности, к тому же гораздо более крупноформатных, а значит предполагающих укороченные сроки строительства.

Речь идет, разумеется, об автоклавном газобетоне и поризованном кирпиче. Эти современные, легкие, крупноформатные строительные материалы обладают коэффициентом теплопроводности в пределах 0,14-0,18 Вт / °C, а некоторые производители теплой керамики довели значение этого параметра до 0,11. Нетрудно подсчитать, что современным требованиям удовлетворит стена от 35 см. до полуметра. Приобретение теплой керамики окупится простотой конструкции: ее требуется просто оштукатурить, к тому же малый удельный вес материала позволит существенно сэкономить на фундаменте.

Обходим 2 метра законным образом

Собственно говоря, СНиП 23-02-2003 «Тепловая защита зданий» требует не строительства коттеджей со стенами определенной толщины, а трех конкретных вещей:

  • соответствия приведенного сопротивления теплопередачи отдельных элементов ограждающих конструкций здания нормам;
  • температура на внутренней поверхности стены должна быть выше температуры точки росы;
  • удельный расход тепловой энергии на отопление здания, должен соответствовать нормированным значениям этого показателя.

Если не получается выполнить требование №1 достаточно выполнить 2 и 3. Чтобы стены дома не мокли, температура их внутренней поверхности дома не должна отличаться от температуры воздуха в доме. В СНиП говорится о допустимой разнице в 4оС. Этот показатель будет достигнут уже для кирпичной стены толщиной в 1,1-1,3 метра.

Чтобы удовлетворить второму требованию, придется серьезно поработать над ликвидацией потерь тепла: герметизировать окна и двери, утеплить перекрытия подвалов и чердаков и так далее. В этом случае, нормы теплосбережения могут быть выполнены, даже если сопротивление теплопередаче не превышает 2,6-2,8 м*°C / Вт.

Для нормального самочувствия семьи большую роль играют благоприятный микроклимат в помещениях, хорошая освещенность, наличие необходимых устройств для личной гигиены и т. д. Все это обеспечивается оборудованием домов и квартир различными санитарно-техническими приборами, к которым относятся установки газо- и водоснабжения, канализации, отопительное и водонагревательное оборудование.

При оснащении дома установками для отопления, вентиляции и подогрева воды или при их переоборудовании нелишне рассмотреть различные аспекты экономного расходования энергетических ресурсов. Необходимо учитывать, что способы ведения домашнего хозяйства связаны с расходом энергии. Из 238 видно, что преобладающее количество энергии расходуется на отопление. Следовательно, ему и должно быть уделено наибольшее внимание. При этом вопрос следует рассматривать комплексно. Это значит, что необходимо учесть все факторы, влияющие на расход энергии, и разработать мероприятия по ее экономии. И дело не только в выборе установок отопления. Тепловую энергию значительно труднее экономить, чем, например, энергию, расходуемую на освещение. Большинство мероприятий по экономии энергии заключается в тесной взаимосвязи между конструктивными строительными решениями и типом установок отопления и вентиляции. На что же необходимо обратить внимание?

Улучшение теплоизоляции, например путем увеличения слоя используемого материала или применения окон с многослойным остеклением, уменьшает мощность отопительного оборудования. Это значит, что можно уменьшить мощность применяемых котлов, изменить площадь поверхности нагрева отопительных приборов и т.д. Перед тем, как устанавливать в доме новые отопительные устройства, следует прежде всего улучшить теплоизоляцию дома, что существенно уменьшит расходы на оборудование. Это важное обстоятельство следует особо учитывать при использовании высокоэффективного вида энергии (электроэнергии и газа), а также энергии окружающей среды. Режим работы отопительных устройств позволяет сделать правильные выводы относительно выполнения теплоизоляции дома (239). При прерывистой работе отопительных установок, например при газовом обогреве, для краткосрочной компенсации теплопотерь следует предусмотреть внутреннюю теплоизоляцию. Для предотврашения больших колебаний температуры в помещении при непрерывной работе отопительных устройств, например водяного отопления, необходимо предусмотреть наружную теплоизоляцию стен, что повышает их аккумулирующую способность. Окна и двери можно уплотнить отходами войлока или полосами пенопласта (240). Но следует при этом предусмотреть минимально возможную вентиляцию, необходимую для работы установок с открытым огнем: печей на угольном топливе, плит на угле и газе, газовых отопительных приборов и водогрейных колонок на угольном топливе.

Теплоизоляция элементов оборудования. Часто оконные ниши имеют более тонкие наружные стенки по сравнению с общей толщиной стен. Если в такой нише установлен нагревательный прибор, то излишние теплопотери достаточно ощутимы. Теплота посредством теплоизлучения и конвекции передается радиатором окружающим внутренним конструкциям, при этом температура поверхности стен может повыситься до 50 °С. Из-за недостаточной теплоизоляции стена в оконной нише теряет в пять раз больше тепла, чем другие участки стены такой же площади. В любом случае внутренняя теплоизоляция, устанавливаемая за нагревательным прибором с внутренней стороны стены, уменьшает тепловые потери. Такая же теплоизоляция (241) должна быть устроена при установке газо- и электронагревательных приборов у стен с нормальной толщиной кладки, учитывая, что газ, и электроэнергия являются дорогими источниками энергии.

При устройстве дополнительного слоя теплоизоляции следует иметь в виду, что расстояние между нагревательным прибором и стеной (242) должно составлять не менее 40 мм с тем, чтобы не ухудшить конвекцию (движение воздуха). Из-за несоблюдения этого условия часто приходится демонтировать нагревательные приборы и заново укладывать теплоизоляцию. Теплоизоляцию внутренней поверхности стен где отсутствуют нагревательные приборы, можно выполнять любым способом. Это может быть, например, облицовка ниши газобетоном, применение древесноволокнистых легких плит (ДВП) и использование легкого теплоизоляционного материала с закреплением его плитами типа гипсокартона.


Оправдало себя также применение теплоотражающих пленок, возвращающих большую часть тепла в помещение. Если расстояние между стеной и нагревательным прибором ограничено, то в этом случае даже одна только пленка может дать значительный эффект. Можно руководствоваться следующим практическим правилом: все стены толщиной менее 1,5 кирпича необходимо дополиительно теплоизолировать.

Отопительные котлы, нагреватели воды, трубопроводы горючей воды и прочие устройства при недостаточной их теплоизоляции также отдают теплоту в окружающую среду. Это значительно ухудшает коэффициент полезного действия нагревательных устройств. В качестве теплоизоляции котлов (243), нагревателей воды и трубопроводов можно использовать маты из стекловолокна и минеральной ваты, изоляционные шнуры или же оболочки (скорлупы) заводского изготовления. Толщина теплоизоляционного слоя для наружной поверхности котлов и баков принимается от 50 до 70 мм, для теплоизоляции трубопроводов - около 30-40 мм. Поверх теплоизоляции устраивается защитное покрытие из кровельной стали или слоя асбестогипсовой штукатурки.

Энергосберегающие способы монтажа отопительных установок. Общий расход энергии зависит от правильного выбора размеров установки и соответствующей технической увязки всех ее элементов. Конструктивное исполнение индивидуальной системы отопления часто является решающим с точки зрения экономного расхода энергии. При печном отоплении нескольких комнат размеры воздушных каналов могут быть выбраны неправильно, что может привести к разной степени обогрева отдельных комнат. Тогда приходится несколько усиливать топку, чтобы обеспечить во всех комнатах нормальную температуру воздуха. Поэтому необходимо иметь закрывающиеся воздушные решетки на всех отверстиях для выхода теплого воздуха в помещение. Газовоздухонагреватель из соображений экономии энергии целесообразно устанавливать у внутренней стены

Дымоходы неработающих печей должны быть по возможности закрыты, чтобы исключить неконтролируемые потери теплоты с уходящим воздухом из помещения. При газовом отоплении комнат, совмещенном с дымоходом камина, следует рекомендовать устройство клапанов на дымоходе (245). Такой клапан открывается и закрывается автоматически в зависимости от работы отопительной установки. Датчиком служит биметаллический чувствительный элемент.

Наилучшее использование отопительного котла на твердом топливе достигается при длительной его работе и загрузке на 90 % его номинальной мощности. Если наружная температура не слишком низка и не нужно усиленно топить, то котел используется на 50 % своей номинальной мощности.

Благодаря правильно организованному режиму отопления становится излишним дополнительный подогрев. Это значит, что при необходимости отопления всех помещений дома вначале следует включить отопление основных комнат, а остальные помещения подключить в систему отопления несколько позже. При этом температура теплоносителя - воды не должна достигать температуры кипения.

Если при испытании отопительного котла будет установлено, что он имеет излишнюю поверхность нагрева, то с помощью специалиста следует или удалить некоторые элементы (секции) котла, или же уменьшить поверхность нагрева посредством дополнительной внутренней обмуровки огнеупорным кирпичом. При этом нужно учитывать вид топлива, ибо чем меньше его теплота сгорания, тем больше должна быть поверхность нагрева котла.

Для правильного выполнения ограждения радиаторов (246) нужно руководствоваться следующими основными принципами:

циркуляция воздуха у радиатора должна ^быть свободной, не уменьшать теплоотдачу конвекцией;

фронтальную часть ограждения следует выполнять по возможности из тонколистовой стали и изнутри красить в черный или другой темный цвет, чтобы уменьшить составляющую лучистой энергии;

между поверхностью нагрева и наружной стеной следует предусмотреть дополнительную теплоизоляцию или отражающую поверхность, чтобы не увеличить теплопотери через наружную стену.

Возможность одновременного подогрева воды и отопления помещений следует предусмотреть при выборе мощности котла. Для летнего периода такой режим работы неприемлем, так. как использование отопительного котла только для горячего водоснабжения оказывается неэффективным. Здесь возможны следующие решения:

дополнительное оснащение бака для воды электронагревателем мощностью 1500-3000 Вт для постоянной работы или для работы в,ночное время;

установка дополнительных местных водонагрева-тельных устройств, например водогрейных колонок на твердом топливе, электрических или газовых водогрейных колонок;

устройство солнечного подогревателя воды, соединенного с водонагревателем другого типа.

Нужно иметь в виду, что вместимость бака для воды должна быть значительно большей, чем при подогреве воды в отопительном котле, а именно 600 л вместо 200-300 л, так как тепло должно сохраняться в течение нескольких дней. Равным образом теплоизоляция бака должна быть эффективной.

При местном подогреве воды посредством газовых или электрических нагревателей следует определить тип и схему установки,-место размещения водогрейных устройств. Как правило, их устанавливают вблизи устройств водоразбора. Трубопроводы горячей воды должны быть как можно короче (3-6 м) и теплоизолированы. При необходимости устанавливают дополнительно меньшие по мощности вторичные водогрейные устройства, которые могут оказаться более экономичными в общем энергетическом балансе.

В процессе эксплуатации топочного оборудования возникают неплотности, через которые подсасывается воздух. По этой причине топливо в топке сгорает неэффективно. Местами подсоса воздуха могут быть у кафельных печей - швы в кладке, у отопительных котлов - соединительные швы между элементами, неуплотненные дверцы, неплотно закрывающиеся дверцы топок и дверцы золоудаления, места соединения печей или котлов с дымоходами, прогоревшие или проржавевшие газоходные трубы, трещины в дымоходах и дымовых трубах

После окончания отопительного сезона следует провести осмотр печей, отопительных котлов, дымоходов и труб. Обнаруженные неплотности можно устранить самостоятельно, например заделать швы у печей и мест подключения к дымоходам и т.д.

Более 1/3 мирового потребления энергии связано с эксплуатацией зданий, в основном с необходимостью их нагрева или охлаждения, поэтому с каждым годом в мире всё больше внимания уделяют разработке новых концепций, увеличивающих роль окон ПВХ в системе теплосбережения зданий, сообщает портал ОКНА МЕДИА.

Использование мер по повышению энергоэффективности в зданиях может не только уменьшить эксплуатационные расходы квартиры или дома, но также оказать существенное воздействие на снижение спроса на ископаемые виды топлива.

Влияние окон на энергетический баланс дома


Анализируя свои ежегодные затраты на отопление жилья или кондиционирование воздуха, мы редко задумываемся, что большая часть этих расходов по счетам за электроэнергию связана с утечкой тепла через внутреннюю оболочку дома (более 65% от общих потерь тепла в здании). По подсчётам российских экспертов отопление занимает 1 место в списке услуг на коммунальные платежи.

Критическими точками в зонах, которые могут иметь наибольшее влияние на энергетический баланс комнаты или всего дома являются именно окна. Их роль в балансе растет в зависимости от поверхности остекления и очень сильно зависит от параметров и характеристик стеклопакета, профиля, а также методов герметизации и монтажа.

Поэтому для повышения комфорта в доме необходимо обеспечить правильное решение - энергоэффективные пластиковые окна, которые помогают снизить потери тепла и предоставить нам значительное уменьшение эксплуатационной стоимости дома или квартиры.

Об энергоэффективных окнах можно подробнее узнать из статей: «Энергоэффективные окна» и «Энергоэффективные пластиковые окна» .

Конструкция окна отвечает за потери тепла

Потери тепла в целом определяет конструкция окна. Что это значит на практике? Обычно основной акцент делается на качество стеклопакета, поскольку он занимает большую площадь по сравнению с другими комплектующими пластикового окна. Безусловно, это верно, однако, не зря окно ПВХ называют системой, где каждый элемент помогает получить суммарный качественный показатель пластикового окна.

Даже в случае с большими окнами тепловые характеристики являются главным образом следствием характеристик стеклопакета, однако, не следует игнорировать влияние профилирования на коэффициент теплопередачи всего окна. Выбор профилей с улучшенными характеристиками, чем стандартные, увеличивает термический КПД всего пластикового окна.

Таким образом, хорошая теплоизоляция окон из ПВХ характеризуется наряду с другими комплектующими, потенциалом энергоэффективности, обеспечиваемым ПВХ профилями.

ПВХ-профили бывают 3, 4, 5 и 6 камерными. Их конструкция предусматривает, что средняя камера предназначается для армирующей вставки, а остальные - для усиления показателей по теплосбережению. Изобилие профилей, представленных на рынке, тем не менее, можно сгруппировать по одному из важнейших показателей - коэффициенту сопротивления теплопередаче.

Сегодня на отечественном рынке ПВХ-профилей превалируют 60-е серии (3-4 камерные) или профили эконом класса. Их коэффициент сопротивления теплопередаче достигает 0,79 м2°С /Вт (с армированием).3 и 4 камерные ПВХ профили имеют ширину (монтажную глубину) 58-62 мм. Пластиковые окна с таким профилями пока занимают преобладающую долю на рынке России.

Значительное место также отводится 5-камерным профилям (они, как правило, шириной 70-76 мм), считавшимся в последние годы самой совершенной системой на рынке. Что касается стоимости, то разница в цене между 5-камерной профильной системой и 3-камерной может достигать 5-7%.

Для современного рынка профилей характерно изобилие предложений различных марок ПВХ-профилей, при этом он не стоит на месте внедряет всё больше новинок.

Знакомьтесь, окно с 6-камерным ПВХ профилем

Помимо 5-камерного профиля, отличающегося конкурентоспособными характеристиками, также дорогу на российский рынок начала прокладывать линейка 6-камерных профилей. Шестикамерный профиль – это эффективная система для дома, обладающая следующими преимуществами: улучшенная звуко-, теплоизоляция и герметичность, уникальные возможности для дизайна интерьера, в том числе возможность применения ламинации и широкий выбор цветной фурнитуры. Их монтажная глубина позволяет достигнуть превосходной степени энергоэффективности.

Значение коэффициента теплопередачи для наиболее распространенных 5-камерных профилей на российском рынке колеблется в радиусе 0,8 Вт/м2К, а тот же показатель 6-камерных профилей может достигать от 1,0 до 1,6 Вт/м2К. Ширина такого профиля может достигать от 80мм до 92мм.

Расширяем возможности пластикового окна

Для данного ПВХ профиля из-за большой глубины установки можно использовать стеклопакеты большей ширины - это гарантирует отличную теплоизоляцию окна. Проникновению холода в помещения зимой также препятствует плотный притвор элементов пластикового окна благодаря использованию уникальных автоматизированных технологий установки уплотнения.

Обеспечение высокой звукоизоляции окна за счет ряда конструктивных решений: увеличенной ширины притвора створки к раме со стороны помещения, трёх контуров притвора, плотного прилегания уплотнителя по всему притвору, может быть усилено благодаря возможности установки шумоизоляционного стеклопакета.

Использование трех уровней уплотнения значительно снижает потенциал теплового моста (который в случае окон старого типа происходит по периметру остекления), способствуя максимальной герметичности окон.

Профили этой серии также как и 3,4 и 5 предлагаются в широкой цветовой гамме, как однородные, так и имитирующие версии различных пород древесины. Особой чертой 6-камерных профилей является высокая степень развития пластиката, поэтому поверхность профилей гладкая и блестящая, что облегчает их обслуживание.

Большинством известных компаний производителей ПВХ профилей 6-камерные профильные системы уже включены в ассортимент.

Увезу тебя я в тундру

Современные пластиковые окна отличают высокая функциональность и элегантный внешний вид. Они обеспечивают высочайший комфорт, максимальную теплоизоляцию, экономичность и экологичность.

Помимо этого, оконный профиль обладает высокой морозостойкостью, а окна из 6-камерного профиля, имеющие три контура уплотнения, могут сохранять тепло в жилье даже при снижении температур зимой до -60˚С..Поэтому окна ПВХ идеально подходят для использования в условиях крайнего севера, а также для всех регионов, отличающихся морозными и ветреными зимами. Усиленные энергосберегающими стеклопакетами или теплопакетами, такие оконные конструкции готовы к встрече с самой суровой зимой.

Вместо резюме

Инвестиции в повышение стандартов энергоэффективности зданий, применяя решения, минимизирующие потребление энергии, представляют не только ощутимую экономию для нас, но и способствуют внедрению в жизнь экологически чистых технологий. Благодаря повышению энергоэффективности зданий за счёт увеличения роли окон в системе теплосбережения, каждый человек имеет возможность сделать свой вклад, что в итоге позволит значительно снизить выбросы CO ².

Увеличение ширины профильной системы ведет к повышению энергоэффективности окна, что очень важно в рамках принятого закона об энергоэффективности. И в будущем это позволит собственникам жилья экономить на оплате отопления квартиры или дома. Инновационные очень широкие 6-камерные профили - это ответ на современные тенденции и потребности оконных и дверных систем из ПВХ для пассивного строительства с низким энергопотреблением. Они сочетает традиционные технологии с отличными значениями коэффициента теплоизоляции. Однако, при выборе пластиковых окон, следует руководствоваться не только погоней за новинками, но и рациональной экономией средств, подбирая необходимую конструкцию, дающую максимальный суммарный эффект конкретному жилью. Ведь именно для этого и устанавливается пластиковое окно, чтобы помогать его владельцу экономить по всем фронтам