Нахождение нок и нод правило. Зачем вводить понятия "Наибольший общий делитель (НОД)" и "Наименьшее общее кратное (НОК)" чисел в школьный курс математики

Нахождение наибольшего общего делителя трех и большего количества чисел может быть сведено к последовательному нахождению НОД двух чисел. Мы об этом упоминали, при изучении свойств НОД. Там мы сформулировали и доказали теорему: наибольший общий делитель нескольких чисел a 1 , a 2 , …, a k равен числу d k , которое находится при последовательном вычислении НОД(a 1 , a 2)=d 2 , НОД(d 2 , a 3)=d 3 , НОД(d 3 , a 4)=d 4 , …,НОД(d k-1 , a k)=d k .

Давайте разберемся, как выглядит процесс нахождения НОД нескольких чисел, рассмотрев решение примера.

Пример.

Найдите наибольший общий делитель четырех чисел 78 , 294 , 570 и 36 .

Решение.

В этом примере a 1 =78 , a 2 =294 , a 3 =570 , a 4 =36 .

Сначала по алгоритму Евклида определим наибольший общий делитель d 2 двух первых чисел 78 и 294 . При делении получаем равенства 294=78·3+60 ; 78=60·1+18 ;60=18·3+6 и 18=6·3 . Таким образом, d 2 =НОД(78, 294)=6 .

Теперь вычислим d 3 =НОД(d 2 , a 3)=НОД(6, 570) . Опять применим алгоритм Евклида:570=6·95 , следовательно, d 3 =НОД(6, 570)=6 .

Осталось вычислить d 4 =НОД(d 3 , a 4)=НОД(6, 36) . Так как 36 делится на 6 , тоd 4 =НОД(6, 36)=6 .

Таким образом, наибольший общий делитель четырех данных чисел равен d 4 =6 , то есть,НОД(78, 294, 570, 36)=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

Разложение чисел на простые множители также позволяет вычислять НОД трех и большего количества чисел. В этом случае наибольший общий делитель находится как произведение всех общих простых множителей данных чисел.

Пример.

Вычислите НОД чисел из предыдущего примера, используя их разложения на простые множители.

Решение.

Разложим числа 78 , 294 , 570 и 36 на простые множители, получаем 78=2·3·13 ,294=2·3·7·7 , 570=2·3·5·19 , 36=2·2·3·3 . Общими простыми множителями всех данных четырех чисел являются числа 2 и 3 . Следовательно, НОД(78, 294, 570, 36)=2·3=6 .

Ответ:

НОД(78, 294, 570, 36)=6 .

К началу страницы

Нахождение НОД отрицательных чисел

Если одно, несколько или все числа, наибольший делитель которых нужно найти, являются отрицательными числами, то их НОД равен наибольшему общему делителю модулей этих чисел. Это связано с тем, что противоположные числа a и −a имеют одинаковые делители, о чем мы говорили при изучении свойств делимости.

Пример.

Найдите НОД отрицательных целых чисел −231 и −140 .

Решение.

Модуль числа −231 равен 231 , а модуль числа −140 равен 140 , иНОД(−231, −140)=НОД(231, 140) . Алгоритм Евклида дает нам следующие равенства:231=140·1+91 ; 140=91·1+49 ; 91=49·1+42 ; 49=42·1+7 и 42=7·6 . Следовательно,НОД(231, 140)=7 . Тогда искомый наибольший общий делитель отрицательных чисел−231 и −140 равен 7 .


Ответ:

НОД(−231, −140)=7 .

Пример.

Определите НОД трех чисел −585 , 81 и −189 .

Решение.

При нахождении наибольшего общего делителя отрицательные числа можно заменить их абсолютными величинами, то есть, НОД(−585, 81, −189)=НОД(585, 81, 189) . Разложения чисел 585 , 81 и 189 на простые множители имеют соответственно вид585=3·3·5·13 , 81=3·3·3·3 и 189=3·3·3·7 . Общими простыми множителями этих трех чисел являются 3 и 3 . Тогда НОД(585, 81, 189)=3·3=9 , следовательно,НОД(−585, 81, −189)=9 .

Ответ:

НОД(−585, 81, −189)=9 .

35. Корені многочлена. Теорема Безу. (33 и выше)

36. Кратні корені, критерій кратності кореня.

Чтобы понять, как вычислять НОК, следует определиться в первую очередь со значением термина "кратное".


Кратным числу А называют такое натуральное число, которое без остатка делится на А. Так, числами кратными 5 можно считать 15, 20, 25 и так далее.


Делителей конкретного числа может быть ограниченное количество, а вот кратных бесконечное множество.


Общее кратное натуральных чисел - число, которое делится на них без остатка.

Как найти наименьшее общее кратное чисел

Наименьшее общее кратное (НОК) чисел (двух, трех или больше) - это самое маленькое натурально число, которое делится на все эти числа нацело.


Чтобы найти НОК, можно использовать несколько способов.


Для небольших чисел удобно выписать в строчку все кратные этих чисел до тех пор, пока среди них не найдется общее. Кратные обозначают в записи заглавной буквой К.


Например, кратные числа 4 можно записать так:


К (4) = {8,12, 16, 20, 24, ...}


К (6) = {12, 18, 24, ...}


Так, можно увидеть, что наименьшим общим кратным чисел 4 и 6 является число 24. Эту запись выполняют следующим образом:


НОК (4, 6) = 24


Если числа большие, найти общее кратное трех и более чисел, то лучше использовать другой способ вычисления НОК.


Для выполнения задания необходимо разложить предложенные числа на простые множители.


Сначала нужно выписать в строчку разложение наибольшего из чисел, а под ним - остальных.


В разложении каждого числа может присутствовать различное количество множителей.


Например, разложим на простые множители числа 50 и 20.




В разложении меньшего числа следует подчеркнуть множители, которые отсутствуют в разложении первого самого большого числа, а затем их добавить к нему. В представленном примере не хватает двойки.


Теперь можно вычислить наименьшее общее кратное 20 и 50.


НОК (20, 50) = 2 * 5 * 5 * 2 = 100


Так, произведение простых множителей большего числа и множителей второго числа, которые не вошли в разложение большего, будет наименьшим общим кратным.


Чтобы найти НОК трех чисел и более, следует их все разложить на простые множители, как и в предыдущем случае.


В качестве примера можно найти наименьшее общее кратное чисел 16, 24, 36.


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


Так, в разложение большего числа на множители не вошли только две двойки из разложения шестнадцати (одна есть в разложении двадцати четырех).


Таким образом, их нужно добавить к разложению большего числа.


НОК (12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


Существуют частные случаи определения наименьшего общего кратного. Так, если одно из чисел можно поделить без остатка на другое, то большее из этих чисел и будет наименьшим общим кратным.


Например, НОК двенадцати и двадцати четырех будет двадцать четыре.


Если необходимо найти наименьшее общее кратное взаимно простых чисел, не имеющих одинаковых делителей, то их НОК будет равняться их произведению.


Например, НОК (10, 11) = 110.

Наибольший общий делитель и наименьшее общее кратное - ключевые арифметические понятия, которые позволяют без усилий оперировать обыкновенными дробями. НОК и чаще всего используются для поиска общего знаменателя нескольких дробей.

Основные понятия

Делитель целого числа X - это другое целое число Y, на которое X разделяется без остатка. К примеру, делитель 4 - это 2, а 36 - 4, 6, 9. Кратное целого X - это такое число Y, которое делится на X без остатка. К примеру, 3 кратно 15, а 6 - 12.

Для любой пары чисел мы можем найти их общие делители и кратные. К примеру, для 6 и 9 общим кратным является 18, а общим делителем - 3. Очевидно, что делителей и кратных у пар может быть несколько, поэтому при расчетах используется наибольший делитель НОД и наименьшее кратное НОК.

Наименьший делитель не имеет смысла, так как для любого числа это всегда единица. Наибольшее кратное также бессмысленно, так как последовательность кратных устремляется в бесконечность.

Нахождение НОД

Для поиска наибольшего общего делителя существует множество методов, самые известные из которых:

  • последовательный перебор делителей, выбор общих для пары и поиск наибольшего из них;
  • разложение чисел на неделимые множители;
  • алгоритм Евклида;
  • бинарный алгоритм.

Сегодня в учебных заведениях наиболее популярными являются методы разложения на простые множители и алгоритм Евклида. Последний в свою очередь используется при решении диофантовых уравнений: поиск НОД требуется для проверки уравнения на возможность разрешения в целых числах.

Нахождение НОК

Наименьшее общее кратное точно также определяется последовательным перебором или разложением на неделимые множители. Кроме того, легко найти НОК, если уже определен наибольший делитель. Для чисел X и Y НОК и НОД связаны следующим соотношением:

НОК (X,Y) = X × Y / НОД(X,Y).

Например, если НОД(15,18) = 3, то НОК(15,18) = 15 × 18 / 3 = 90. Наиболее очевидный пример использования НОК - поиск общего знаменателя, который и является наименьшим общим кратным для заданных дробей.

Взаимно простые числа

Если у пары чисел нет общих делителей, то такая пара называется взаимно простой. НОД для таких пар всегда равен единице, а исходя из связи делителей и кратных, НОК для взаимно простых равен их произведению. К примеру, числа 25 и 28 взаимно просты, ведь у них нет общих делителей, а НОК(25, 28) = 700, что соответствует их произведению. Два любых неделимых числа всегда будут взаимно простыми.

Калькулятор общего делителя и кратного

При помощи нашего калькулятора вы можете вычислить НОД и НОК для произвольного количества чисел на выбор. Задания на вычисление общих делителей и кратных встречаются в арифметике 5, 6 класса, однако НОД и НОК - ключевые понятия математики и используются в теории чисел, планиметрии и коммуникативной алгебре.

Примеры из реальной жизни

Общий знаменатель дробей

Наименьшее общее кратное используется при поиске общего знаменателя нескольких дробей. Пусть в арифметической задаче требуется суммировать 5 дробей:

1/8 + 1/9 + 1/12 + 1/15 + 1/18.

Для сложения дробей выражение необходимо привести к общему знаменателю, что сводится к задаче нахождения НОК. Для этого выберите в калькуляторе 5 чисел и введите значения знаменателей в соответствующие ячейки. Программа вычислит НОК (8, 9, 12, 15, 18) = 360. Теперь необходимо вычислить дополнительные множители для каждой дроби, которые определяются как соотношение НОК к знаменателю. Таким образом, дополнительные множители будут выглядеть как:

  • 360/8 = 45
  • 360/9 = 40
  • 360/12 = 30
  • 360/15 = 24
  • 360/18 = 20.

После этого умножаем все дроби на соответствующий дополнительный множитель и получаем:

45/360 + 40/360 + 30/360 + 24/360 + 20/360.

Такие дроби мы можем легко суммировать и получить результат в виде 159/360. Сокращаем дробь на 3 и видим окончательный ответ - 53/120.

Решение линейных диофантовых уравнений

Линейные диофантовы уравнения - это выражения вида ax + by = d. Если отношение d / НОД(a, b) есть целое число, то уравнение разрешимо в целых числах. Давайте проверим пару уравнений на возможность целочисленного решения. Сначала проверим уравнение 150x + 8y = 37. При помощи калькулятора находим НОД (150,8) = 2. Делим 37/2 = 18,5. Число не целое, следовательно, уравнение не имеет целочисленных корней.

Проверим уравнение 1320x + 1760y = 10120. Используем калькулятор для нахождения НОД(1320, 1760) = 440. Разделим 10120/440 = 23. В результате получаем целое число, следовательно, диофантово уравнение разрешимо в целых коэффициентах.

Заключение

НОД и НОК играют большую роль в теории чисел, а сами понятия широко используются в самых разных областях математики. Используйте наш калькулятор для расчета наибольших делителей и наименьших кратных любого количества чисел.

Второе число: b=

Разделитель разрядов Без разделителя пробел " ´

Результат:

Наибольший общий делитель НОД(a ,b )=6

Наименьшее общее кратное НОК(a ,b )=468

Наибольшее натуральное число, на которое делятся без остатка числа a и b, называется наибольшим общим делителем (НОД) этих чисел. Обозначается НОД(a,b), (a,b), gcd(a,b) или hcf(a,b).

Наименьшее общее кратное (НОК) двух целых чисел a и b есть наименьшее натуральное число, которое делится на a и b без остатка. Обозначается НОК(a,b), или lcm(a,b).

Целые числа a и b называются взаимно простыми , если они не имеют никаких общих делителей кроме +1 и −1.

Наибольший общий делитель

Пусть даны два положительных числа a 1 и a 2 1). Требуется найти общий делитель этих чисел, т.е. найти такое число λ , которое делит числа a 1 и a 2 одновременно. Опишем алгоритм.

1) В данной статье под словом число будем понимать целое число.

Пусть a 1 ≥ a 2 , и пусть

где m 1 , a 3 некоторые целые числа, a 3 <a 2 (остаток от деления a 1 на a 2 должен быть меньше a 2).

Предположим, что λ делит a 1 и a 2 , тогда λ делит m 1 a 2 и λ делит a 1 −m 1 a 2 =a 3 (Утверждение 2 статьи "Делимость чисел. Признак делимости"). Отсюда следует, что всякий общий делитель a 1 и a 2 является общим делителем a 2 и a 3 . Справедливо и обратное, если λ общий делитель a 2 и a 3 , то m 1 a 2 и a 1 =m 1 a 2 +a 3 также делятся на λ . Следовательно общий делитель a 2 и a 3 есть также общий делитель a 1 и a 2 . Так как a 3 <a 2 ≤a 1 , то можно сказать, что решение задачи по нахождению общего делителя чисел a 1 и a 2 сведено к более простой задаче нахождения общего делителя чисел a 2 и a 3 .

Если a 3 ≠0, то можно разделить a 2 на a 3 . Тогда

,

где m 1 и a 4 некоторые целые числа, (a 4 остаток от деления a 2 на a 3 (a 4 <a 3)). Аналогичными рассуждениями мы приходим к выводу, что общие делители чисел a 3 и a 4 совпадают с общими делителями чисел a 2 и a 3 , и также с общими делителями a 1 и a 2 . Так как a 1 , a 2 , a 3 , a 4 , ... числа, постоянно убывающие, и так как существует конечное число целых чисел между a 2 и 0, то на каком то шаге n , остаток от деления a n на a n+1 будет равен нулю (a n+2 =0).

.

Каждый общий делитель λ чисел a 1 и a 2 также делитель чисел a 2 и a 3 , a 3 и a 4 , .... a n и a n+1 . Справедливо и обратное, общие делители чисел a n и a n+1 являются также делителями чисел a n−1 и a n , .... , a 2 и a 3 , a 1 и a 2 . Но общий делитель чисел a n и a n+1 является число a n+1 , т.к. a n и a n+1 без остатка делятся на a n+1 (вспомним, что a n+2 =0). Следовательно a n+1 является и делителем чисел a 1 и a 2 .

Отметим, что число a n+1 является наибольшим из делителей чисел a n и a n+1 , так как наибольший делитель a n+1 является сам a n+1 . Если a n+1 можно представить в виде произведения целых чисел, то эти числа также являются общими делителями чисел a 1 и a 2 . Число a n+1 называют наибольшим общим делителем чисел a 1 и a 2 .

Числа a 1 и a 2 могут быть как положительными, так и отрицательными числами. Если один из чисел равен нулю, то наибольший общий делитель этих чисел будет равен абсолютной величине другого числа. Наибольший общий делитель нулевых чисел не определен.

Вышеизложенный алгоритм называется алгоритмом Евклида для нахождения наибольшего общего делителя двух целых чисел.

Пример нахождения наибольшего общего делителя двух чисел

Найти наибольший общий делитель двух чисел 630 и 434.

  • Шаг 1. Делим число 630 на 434. Остаток 196.
  • Шаг 2. Делим число 434 на 196. Остаток 42.
  • Шаг 3. Делим число 196 на 42. Остаток 28.
  • Шаг 4. Делим число 42 на 28. Остаток 14.
  • Шаг 5. Делим число 28 на 14. Остаток 0.

На шаге 5 остаток от деления равен 0. Следовательно наибольший общий делитель чисел 630 и 434 равен 14. Заметим, что числа 2 и 7 также являются делителями чисел 630 и 434.

Взаимно простые числа

Определение 1. Пусть наибольший общий делитель чисел a 1 и a 2 равен единице. Тогда эти числа называются взаимно простыми числами , не имеющими общего делителя.

Теорема 1. Если a 1 и a 2 взаимно простые числа, а λ какое то число, то любой общий делитель чисел λa 1 и a 2 является также общим делителем чисел λ и a 2 .

Доказательство. Рассмотрим алгоритм Евклида для нахождения наибольшего общего делителя чисел a 1 и a 2 (см. выше).

.

Из условия теоремы следует, что наибольшим общим делителем чисел a 1 и a 2 , и следовательно a n и a n+1 является 1. Т.е. a n+1 =1.

Умножим все эти равенства на λ , тогда

.

Пусть общий делитель a 1 λ и a 2 есть δ . Тогда δ входит множителем в a 1 λ , m 1 a 2 λ и в a 1 λ -m 1 a 2 λ =a 3 λ (см. "Делимость чисел",Утверждение 2). Далее δ входит множителем в a 2 λ и m 2 a 3 λ , и, следовательно, входит множителем в a 2 λ -m 2 a 3 λ =a 4 λ .

Рассуждая так мы убеждаемся, что δ входит множителем в a n−1 λ и m n−1 a n λ , и, следовательно, в a n−1 λ m n−1 a n λ =a n+1 λ . Так как a n+1 =1, то δ входит множителем в λ . Следовательно число δ является общим делителем чисел λ и a 2 .

Рассмотрим частные случаи теоремы 1.

Следствие 1. Пусть a и c простые числа относительно b . Тогда их произведение ac является простым числом относительно b .

Действительно. Из теоремы 1 ac и b имеют тех же общих делителей, что и c и b . Но числа c и b взаимно простые, т.е. имеют единственный общий делитель 1. Тогда ac и b также имеют единственный общий делитель 1. Следовательно ac и b взаимно простые.

Следствие 2. Пусть a и b взаимно простые числа и пусть b делит ak . Тогда b делит и k .

Действительно. Из условия утверждения ak и b имеют общий делитель b . В силу теоремы 1, b должен быть общим делителем b и k . Следовательно b делит k .

Следствие 1 можно обобщить.

Следствие 3. 1. Пусть числа a 1 , a 2 , a 3 , ..., a m простые относительно числа b . Тогда a 1 a 2 , a 1 a 2 ·a 3 , ..., a 1 a 2 a 3 ···a m , произведение этих чисел простое относительно числа b .

2. Пусть имеем два ряда чисел

таких, что каждое число первого ряда простое по отношению каждого числа второго ряда. Тогда произведение

Требуется найти такие числа, которые делятся на каждое из этих чисел.

Если число делится на a 1 , то оно имеет вид sa 1 , где s какое-нибудь число. Если q есть наибольший общий делитель чисел a 1 и a 2 , то

где s 1 - некоторое целое число. Тогда

является наименьшим общим кратным чисел a 1 и a 2 .

a 1 и a 2 взаимно простые, то наименьшее общее кратное чисел a 1 и a 2:

Нужно найти наименьшее общее кратное этих чисел.

Из вышеизложенного следует, что любое кратное чисел a 1 , a 2 , a 3 должно быть кратным чисел ε и a 3 , и обратно. Пусть наименьшее общее кратное чисел ε и a 3 есть ε 1 . Далее, кратное чисел a 1 , a 2 , a 3 , a 4 должно быть кратным чисел ε 1 и a 4 . Пусть наименьшее общее кратное чисел ε 1 и a 4 есть ε 2 . Таким образом выяснили, что все кратные чисел a 1 , a 2 , a 3 ,...,a m совпадают с кратными некоторого определенного числа ε n , которое называют наименьшим общим кратным данных чисел.

В частном случае, когда числа a 1 , a 2 , a 3 ,...,a m взаимно простые, то наименьшее общее кратное чисел a 1 , a 2 как было показано выше имеет вид (3). Далее, так как a 3 простое по отношению к числам a 1 , a 2 , тогда a 3 простое по отношению числа a 1 ·a 2 (Следствие 1). Значит наименьшее общее кратное чисел a 1 ,a 2 ,a 3 является число a 1 · a 2 ·a 3 . Рассуждая аналогичным образом мы приходим к следующим утверждениям.

Утверждение 1. Наименьшее общее кратное взаимно простых чисел a 1 , a 2 , a 3 ,...,a m равен их произведению a 1 ·a 2 ·a 3 ···a m .

Утверждение 2. Любое число, которое делится на каждое из взаимно простых чисел a 1 , a 2 , a 3 ,...,a m делится также на их произведение a 1 ·a 2 ·a 3 ···a m .

Нахождение наиМЕНЬШЕГО общего кратного (НОК) и наиБОЛЬШЕГО общего делителя (НОД) натуральных чисел.

2

5

2

5

3

3

5

60=2*2*3*5
75=3*5*5
2) Выпишем множители, входящие в разложение первого из этих чисел и добавим к ним недостающий множитель 5 из разложения второго числа. Получаем: 2*2*3*5*5=300. Нашли НОК, т.е. эта сумма = 300. Не забываем размерность и пишем ответ:
Ответ: Мама дает по 300 рублей.

Определение НОД: Наибольшим общим делителем (НОД) натуральных чисел а и в называют наибольшее натуральное число c , на которое и a , и b делятся без остатка. Т.е. c это нибольшее натуральное число, для которого и а и б являются кратными.

Памятка: Существуют два подхода к определению натуральных чисел

  • числа, используемые при: перечислении (нумеровании) предметов (первый, второй, третий, …); - в школах, обычно так .
  • обозначении количества предметов (нет покемонов - ноль, один покемон, два покемона, …).

Отрицательные и нецелые (рациональные, вещественные, …) числа натуральными не являются. Ноль некоторые авторы включают в множество натуральных чисел, другие - нет. Множество всех натуральных чисел принято обозначать символом N

Памятка: Делителем натурального числа a называют число b, на которое a делится без остатка. Кратным натуральному числу b называют натуральное число a , которое делится на b без остатка. Если число b - делитель числа a , то a кратно числу b . Пример: 2 - делитель 4, а 4 кратно двум. 3 - делитель 12, а 12 кратно 3.
Памятка: Натуральные числа называют простыми, если они делятся без остатка только на себя и на 1. Взаимно простыми называются числа у которых только один общий делитель, равный 1.

Определение как найти НОД в общем случае: Чтобы найти НОД (Наибольший общий делитель) нескольких натуральных чисел надо:
1) Разложить их на простые множители. (Для этого Вам может очень пригодиться Таблица простых чисел.)
2) Выписать множители, входящие в разложение одного из них.
3) Вычеркнуть те, которые не входят в разложение остальных чисел.
4) Перемножить множители, получившиеся в п.3).

Задача 2 на (НОК): К новому году Коля Пузатов купил в городе 48 хомяков и 36 кофейников. Фекла Дормидонтова, как самая честная девочка класса, получила задание разделить это имущество на наибольшее возможное число подарочных наборов для учителей. Какое число наборов получилось? Какой состав наборов?

Пример 2.1. решения задачи на нахождение НОД. Нахождение НОД подбором.
Решение: Каждое из чисел и 48, и 36 должно делиться на число подарков.
1) Выпишем делители 48: 48, 24, 16, 12 , 8, 6, 3, 2, 1
2) Выпишем делители 36: 36, 18, 12 , 9, 6, 3, 2, 1 Выбираем наибольший общий делитель. Оп-ля-ля! Нашли, это число наборов 12 штук.
3) Поделим 48 на 12 получим 4, поделим 36 на 12, получим 3. Не забываем размерность и пишем ответ:
Ответ: Получится 12 наборов по 4 хомяка и 3 кофейника в каждом наборе.