Наземно воздушная среда обитания характеризуется следующими особенностями. Экология животных

Наземно-воздушная среда обитания

ОСНОВНЫЕ СРЕДЫ ЖИЗНИ

ВОДНАЯ СРЕДА

Водная среда жизни (гидросфера) занимает 71 % площади земного шара. Более 98 % воды сосредоточено в морях и океанах, 1,24 % - льды полярных областей, 0.45 % - пресные воды рек, озер, болот.

В мировом океане различают две экологические области:

толщу воды – пелагиаль , и дно - бенталь .

В водной среде обитает примерно 150 000 видов животных, или около 7 % от их общего количества и 10 000 видов растений – 8%. Различают следующие экологические группы гидробионтов. Пелагиаль - заселена организмами подразделяющимися на нектон и планктон.

Нектон (нектос – плавающий)- это совокупность пелагических активно передвигающихся животных, не имеющих непосредственной связи с дном. В основном это крупные животные, способные преодолевать большие расстояния и сильные водные течения. Для них характерна обтекаемая форма тела и хорошо развитые органы движения (рыбы, кальмары, ластоногие, киты) В пресных водах к нектону кроме рыб относятся земноводные и активно перемещающиеся насекомые.

Планктон (блуждающий, парящий)- это совокупность пелагических организмов, не обладающих способностью к быстрым активным передвижениям. Подразделяются на фито- и зоопланктон (мелкие ракообразные, простейшие – фораминиферы, радиолярии; медузы, крылоногие моллюски). Фитопланктон – диатомовые и зеленые водоросли.

Нейстон – совокупность организмов, населяющих поверхностную пленку воды на границе с воздушной средой. Это личинки дясятиногих, усоногих, веслоногих ракообразных, брюхоногих и двустворчатых моллюсков, иглокожих, рыб. Проходя личиночную стадию, они покидают поверхностный слой, служивший им и убежищем, перемещаются жить на дно или пелагиаль.

Плейстон – это совокупность организмов, часть тела которых находится над поверхностью воды, а другая в воде - ряска, сифонофоры.

Бентос (глубина)- совокупность организмов, обитающих на дне водоемов. Подразделяется на фитобентос и зообентос. Фитобентос - водоросли – диатомовые, зеленые, бурые, красные и бактерии; у побережий цветковые растения – зостера, руппия. Зообентос – фораминиферы, губки, кишечнополостные, черви, моллюски, рыбы.

В жизни водных организмов большую роль играют вертикальное перемещение воды, плотность, температурный, световой, солевой, газовый (содержание кислорода и углекислого газа) режимы, концентрация водородных ионов (рН).

Температурный режим : Отличается в воде, во-первых, меньшим притоком тепла, во-вторых большей стабильностью, чем на суше. Часть тепловой энергии, поступающей на поверхность воды, отражается, часть расходуется на испарение. Испарение воды с поверхности водоемов, при котором затрачивается около 2263.8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333.48 Дж/г), замедляет их охлаждение. Изменение температуры в текущих водах следует за ее изменениями в окружающем воздухе, отличаясь меньшей амплитудой.

В озерах и прудах умеренных широт термический режим определяется хорошо известным физическим явлением – вода обладает максимальной плотностью при 4 о С. Вода в них четко делится на три слоя:

1. эпилимнион - верхний слой температура которого испытывает резкие сезонные колебания;

2. металимнион – переходный, слой температурного скачка, отмечается резкий перепад температур;

3. гиполимнион – глубоководный слой, доходящий до самого дна, где температура в течение года изменяется незначительно.

Летом наиболее теплые слои воды располагаются у поверхности, а холодные – у дна. Данный вид послойного распределения температур в водоеме называется прямая стратификация. Зимой, с понижением температуры, происходит обратная стратификация : поверхностный слой имеет температуру, близкую к 0 С, на дне температура около 4 С, что соответствует максимальной ее плотности. Таким образом, с глубиной температура повышается. Это явление, называемое температурной дихотомией, наблюдается в большинстве озер умеренной зоны летом и зимой. В результате температурной дихотомии нарушается вертикальная циркуляция – наступает период временного застоя – стагнация .

Веснойповерхностная вода вследствие нагревания до 4С становится более плотной и погружается вглубь, а на ее место с глубины поднимается более теплая вода. В результате такой вертикальной циркуляции в водоеме наступает гомотермия, т.е. на какое-то время температура всей водной массы выравнивается. С дальнейшим повышением температуры верхние слои становятся все менее плотными и уже не опускаются вниз – летняя стагнация. Осенью же поверхностный слой охлаждается становится более плотным и опускается вглубь, вытесняя на поверхность более теплую воду. Это происходит до наступления осенней гомотермии. При охлаждении поверхностных вод ниже 4С они становятся менее плотными и опять остаются на поверхности. В результате прекращается циркуляция воды и наступает зимняя стагнация.

Воде свойственна значительная плотность (в 800 раз) превосходит воздушную среду) и вязкость. В среднем в водной толще на каждые 10 м глубины давление возрастает на 1 атм. На растениях эти особенности сказываются в том, что у них очень слабо или вовсе не развивается механическая ткань, поэтому стебли их очень эластичны и легко изгибаются. Большинству водных растений присуща плавучесть и способность находиться в толще воды во взвешенном состоянии, у многих водных животных покровы смазываются слизью, уменьшающей трение при передвижении, а тело обретает обтекаемую форму. Многие обитатели относительно стенобатны и приурочены к определенным глубинам.

Прозрачность и световой режим. Особенно это сказывается на распространении растений: в мутных водоемах они обитают только в поверхностном слое. Световой режим обусловливается также закономерным убыванием света с глубиной из-за того, что вода поглощает солнечный свет. При этом лучи с разной длиной волны поглощаются неодинаково: быстрее всего красные, тогда как сине-зеленые проникают на значительные глубины. Цвет среды при этом меняется, постепенно переходя от зеленоватого до зеленого, голубого, синего, сине-фиолетового, сменяемого постоянным мраком. Соответственно этому с глубиной зеленые водоросли сменяются бурыми и красными, пигменты которых приспособлены к улавливанию солнечных лучей с разной длиной волны. С глубиной также закономерно меняется окраска животных. В поверхностных слоях воды обитают ярко и разнообразно окрашенные животные, тогда как глубоководные виды лишены пигментов. В сумречной обитают животные, окрашенные в цвета с красноватым оттенком, что помогает им скрываться от врагов, так как красный цвет в сине-фиолетовых лучах воспринимается как черный.



Поглощение света в воде тем сильнее, чем меньше ее прозрачность. Прозрачность характеризуется предельной глубиной, где еще виден специально опускаемый диск Секки (белый диск диаметром 20 см). Отсюда и границы зон фотосинтеза сильно колеблются в разных водоемах. В самых чистых водах зона фотосинтеза достигает глубины 200 м.

Соленость воды. Вода - прекрасный растворитель многих минеральных соединений. В результате природным водоемам свойствен определенный химический состав. Наибольшее значение имеют сульфаты, карбонаты, хлориды. Количество растворенных солей на 1 л воды в пресных водоемах не превышает 0,5 г, в морях и океанах - 35 г. Пресноводные растения и животные обитают в гипотонической среде, т.е. среде, в которой концентрация растворенных веществ ниже, чем в жидкостях тела и тканей. Из-за разницы в осмотическом давлении вне и внутри тела в организм постоянно проникает вода, и гидробионты пресных вод вынуждены интенсивно удалять ее. В связи с этим у них хорошо выражены процессы осморегуляции. У простейших это достигается работой выделительных вакуолей, у многоклеточных – удалением воды через выделительную систему. Типично морские и типично пресноводные видыне переносят значительных изменений солености воды -стеногалинные организмы. Эвригаллинные - пресноводный судак, лещ, щука, из морских - семейство кефалевых.

Газовый режим Основными газами в водной среде – кислород и углекислый газ.

Кислород - важнейший экологический фактор. Он поступает в воду из воздуха и выделяется растениями при фотосинтезе. Содержание его в воде обратно пропорционально температуре- с понижением температуры растворимость кислорода в воде (как и других газов) повышается. В слоях, сильно заселенных животными и бактериями, может создаваться дефицит кислорода из-за усиленного его потребления. Так, в мировом океане богатые жизнью глубины от 50 до 1000 м характеризуются резким ухудшением аэрации. Она в 7-10 раз ниже, чем в поверхностных водах населенных фитопланктоном. Около дна водоемов условия могут быть близкими к анаэробным.

Углекислый газ - растворяется в воде примерно в 35 раз лучше, чем кислород и концентрация его в воде в 700 раз больше, чем в атмосфере. Обеспечивает фотосинтез водных растений и участвует в формировании известковых скелетных образований беспозвоночных животных.

Концентрация водородных ионов (рН) – пресноводные бассейны с рН = 3,7-4,7 считаются кислыми, 6,95- 7,3 – нейтральными, с рН 7,8 – щелочными. В пресных водоемах рН испытывает даже суточные колебания. Морская вода более щелочная и ее рН значительно меньше изменяется, чем в пресной. С глубиной рН уменьшается. Концентрация водородных ионов играет большую роль в распределении гидробионтов.

Наземно-воздушная среда обитания

Особенностью наземно-воздушной среды жизни является то, что организмы, обитающие здесь, окружены газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растения укореняются в ней.

В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами, значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток. Воздействие факторов, перечисленных выше, неразрывно связано с движением воздушных масс – ветра.

В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологические, физиологические адаптации.

Рассмотрим особенности воздействия основных экологических факторов на растения и животных в наземно-воздушной среде.

Воздух. Воздух как экологический фактор характеризуется постоянством состава – кислорода в нем обычно около 21%, углекислого газа 0,03 %.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Все обитатели воздушной среды тесно связаны с поверхностью земли, служащей им для прикрепления и опоры. Плотность воздушной среды не оказывает высокого сопротивления организмам при их передвижении по поверхности земли, однако затрудняет перемещение по вертикали. Для большинства организмов пребывание в воздухе связано только с расселением или поиском добычи.

Малая подъемная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные, обитающие на поверхности земли, меньше, чем гиганты водной среды. Крупные млекопитающиеся (размером и массой современного кита) не могли бы жить на суше, так как были бы раздавлены собственной тяжестью.

Малая плотность воздуха создает незначительную сопротивляемость передвижению. Экологические выгоды этого свойства воздушной среды использовали многие наземные животные в ходе эволюции, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов. У многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона по аналогии с планктонными обитателями водной среды.

Основная же экологическая роль горизонтальных воздушных передвижений (ветров) – косвенная в усилении и ослаблении воздействия на наземные организмы таких важных экологических факторов, как температура и влажность. Ветры усиливают отдачу животными и растениями влаги и тепла.

Газовый состав воздуха в приземном слое воздухе довольно однороден (кислород – 20,9 %, азот – 78,1 %, инертные газы – 1 %, углекислый газ – 0,03 % по объему) благодаря его высокой диффузионной способности и постоянному перемешиванию конвекционным и ветровым потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов, и на базе высокой эффективности окислительных процессов возникла гомойотермия животных. Кислород из-за постоянно высокого его содержания в воздухе не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефецит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т.д.

Эдафические факторы. Свойства грунта и рельеф местности также влияют на условия жизни наземных организмов, в первую очередь растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяют названием эдафические факторы среды.

Характер корневой системы растений зависит от гидротермического режима, аэрации, сложения, состав и структуры почвы. Например, корневые системы древесных пород (березы, лиственницы) в районах с многолетней мерзлотой располагаются на небольшой глубине и распростерты вширь. Там, где нет многолетней мерзлоты, корневые системы этих же растений менее распростерты и проникают вглубь. У многих степных растений корни могут доставать воду с большой глубины, в то же время у них много и поверхностных корней в гумусированном горизонте почвы, откуда растения поглощают элементы минерального питания.

Рельеф местности и характер грунта влияют на специфику передвижения животных. Например, копытные, страусы, дрофы, живущие на открытых пространствах, нуждаются в твердом грунте для усиления отталкивания при быстром беге. У ящериц, обитающих на сыпучих песках, пальцы окаймлены бахромкой из роговых чешуй, которая увеличивает поверхность опоры. Для наземных обитателей, роющих норы, плотные грунты неблагоприятны. Характер почвы в ряде случаев влияет на распределение наземных животных, роющих норы, зарывающих в грунт для спасения от жары или хищников либо откладывающих в почву яйца и т.д.

Погодные и климатические особенности. Условия жизни в наземно-воздушной среде осложняются, кроме того, погодными изменениями. Погода – это непрерывно меняющееся состояние атмосферы у земной поверхности, до высоты примерно 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетании таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т.п. Для погодных изменений наряду с закономерным чередованием их в годовом цикле характерны непериодические колебания, что существенно усложняет условия существования наземных организмов. На жизнь водных обитателей погода влияет в значительной меньшей степени и лишь на население поверхностных слоев.

Климат местности. Многолетний режим погоды характеризует климат местности. В понятие климата входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонения от него и их повторяемость. Климат определяется географическими условиями района.

Зональное разнообразие климатов осложняется действием муссонных ветров, распределением циклонов и антициклонов, влиянием горных массивов на движение воздушных масс, степенью удаления от океана и многими другими местными факторами.

Для большинства наземных организмов, особенно мелких, важен не столько климат района, сколько условия их непосредственного местообитания. Очень часто местные элементы среды (рельеф, растительность и т.п.) так изменяют в конкретном участке режим температуры, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие локальные модификации климата, складывающиеся в приземном слое воздуха, называют микроклиматом. В каждой зоне микроклиматы очень разнообразны. Можно выделить микроклиматы сколь угодно малых участков. Например особый режим создается в венчиках цветков, что используют обитающие там обитатели. Особый устойчивый микроклимат возникает в норах, гнездах, дуплах, пещерах и др. закрытых местах.

Осадки. Помимо водообеспечения и создания запасов влаги, они могут играть и другую экологическую роль. Так, сильные ливневые дожди или град оказывают иногда механическое воздействие на растения или животных.

Особенно многообразна экологическая роль снегового покрова. Суточные колебания температур проникают в толщу снега лишь до 25 см, глубже температура почти не изменяется. При морозах в – 20-30 С под слоем снега в 30-40 см температура лишь ненамного ниже нуля. Глубокий снежный покров защищает почки возобновления, предохраняет от вымерзания зеленые части растений; многие виды уходят под снег, не сбрасывая листвы, например ожика волосистая, вероника лекарственная и др.

Мелкие наземные зверки ведут и зимой активный образ жизни, прокладывая под снегом и в его толще целые галереи ходов. Для ряда видов, питающихся подснежной растительностью, характерно даже зимнее размножение, которое отмечено, например, у леммингов, лесной и желтогорлой мыши, ряда полевок, водяной крысы и др. Тетеревиные птицы – рябчики, тетерева, тундряные куропатки – зарываются в снег на ночевку.

Крупным животным зимний снеговой покров мешает добывать корм. Многие копытные (северные олени, кабаны, овцебыки) питаются зимой исключительно подснежной растительностью, и глубокий снежный покров, а особенно твердая корка на его поверхности, возникающая в гололед, обрекают их на бескормицу. Глубина снежного покрова может ограничивать географическое распространение видов. Например, настоящие олени не проникают на север в те районы, где толща снега зимой более 40-50 см.

Световой режим. Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. При разных погодных условиях к поверхности Земли доходит 42-70% солнечной постоянной. Освещенность на поверхности Земли варьирует в широких пределах. Все зависит от высоты стояния Солнца над горизонтом или угла падения солнечных лучей, длины дня и условий погоды, прозрачности атмосферы. Интенсивность света также колеблется в зависимости от времени года и времени суток. В отдельных районах Земли неравноценно и качество света, например, соотношение длинноволновых (красных) и коротковолновых (синих и ультрафиолетовых) лучей. Коротковолновые лучи, как известно, больше, чем длинноволновые, поглощаются и рассеиваются атмосферой.

Наземно-воздушная среда характеризуется особенностями экологических условий, сформировавших специфические приспособления у сухопутных растений и животных, что выразилось в разнообразии морфологических, анатомических, физиологических, биохимических и поведенческих адаптаций.

Низкая плотность атмосферного воздуха затрудняет поддержание формы тела, потому у растений и животных образовалась опорная система. У растений это механические ткани (лубяные и древесинные волокна), которые обеспечивают сопротивление статическим и динамическим нагрузкам: ветру, дождю, снежному покрову. Напряженное состояние клеточной стенки (тургор), вызванное накоплением в вакуолях клеток жидкости с высоким осмотическим давлением обусловливает упругость листьев, стеблей трав, цветков. У животных опору телу создает гидроскелет (у круглых червей), наружный скелет (у насекомых), внутренний (у млекопитающих).

Низкая плотность среды облегчает передвижение животных. Многие наземные виды способны к полету (активному или планирующему) - птицы и насекомые, есть и представители млекопитающих, амфибий и рептилий. Полет связан с передвижением и поиском добычи Активный полет возможен за счет модифицированных передних конечностей, развитых грудных мышц. У планирующих животных образовались между передними и задними конечностями сформировались кожные складки, которые растягиваются и играют роль парашюта.

Высокая подвижность воздушных масс сформировала у растений древнейший способ опыления растений ветром (анемофилия) характерную для многих растений средний полосы и расселения с помощью ветра. Эта экологическая группа организмов (аэропланктон) адаптировалась благодаря большой относительной площади поверхности за счет парашютиков, крыльев, выростов и даже паутины, либо за счет очень мелких размеров.

Низкое атмосферное давление, которое в норме составляет 760 мм ртутного столба (или 101 325 Па), малые перепады давления, сформировали почти у всех обитателей суши чувствительность к сильным перепадам давления. Верхняя граница жизни для большинства позвоночных животных - около 6 000 м. Снижение атмосферного давления с повышением высоты над уровнем моря уменьшает растворимость кислорода в крови. Это увеличивает частоту дыхания, а в результате частое дыхание приводит к обезвоживанию организма. Эта простая зависимость не характерна только для редких видов птиц и некоторых беспозвоночных.

Газовый состав наземно-воздушной среды отличается высоким содержанием кислорода (более чем в 20 раз выше, чем в водной среде). Это позволяет животным иметь очень высокий уровень обмена веществ. Поэтому только на суше могла возникнуть гомойтермность (способность поддерживать постоянную температуру тела, в основном, за счет внутренней энергии).



Значение температуры в жизни организмов определяется влиянием на скорость биохимических реакций. Повышение температуры (до 60 ° С) окружающей среды вызывает у организмов денатурацию белков. Сильное понижение температуры приводит к понижению скорости обмена веществ и как критическое состояние – замерзание воды в клетках (кристаллы льда в клетках нарушают целостность внутриклеточных структур). В основном на суше живые организмы могут существовать только в пределах 0 ° - +50 ° , т.к. эти температуры совместимы с протеканием основных процессов жизнедеятельности. Однако каждый вид имеет свое верхнее и нижнее летальное значение температуры, значение температурного угнетения и температурного оптимума.

Организмы, жизнедеятельность и активность которых зависят от внешнего тепла (микроорганизмы, грибы, растения, беспозвоночные, круглоротые, рыбы, земноводные, пресмыкающиеся) называются пойкилотермами. Среди них есть стенотермы (криофилы - приспособлены небольшим перепадам низких температур и термофилы - приспособлены небольшим перепадам высоких температур) и эвритермы, которые могут существовать при пределах большой температурной амплитуде. Приспособления к перенесению низких температур, позволяющие регулировать обмен веществ в течение длительного времени, осуществляется у организмов двумя способами: а) способность к биохимическим и физиологическим перестройкам - накопление антифризов, которые понижают точку замерзания жидкостей в клетках и тканях и следовательно препятствуют образованию льда; изменение набора, концентрации и активности ферментов, изменение; б) выносливость к замерзанию (холодостойкость) - это временное прекращение активного состояния (гипобиоз или криптобиоз) или накопление в клетках глицерина, сорбита, маннита, которые препятствуют кристаллизации жидкости.

У эвритермов хорошо развита способность перехода в латентное состояние при значительных отклонениях температуры от оптимального значения. После холодового угнетения организмы при определенной температуре восстанавливают нормальный обмен веществ, а это значение температуры называется температурным порогом развития, или биологическим нулем развития.

В основе сезонных перестроек у видов – эвритермов, имеющих широкое распространение, лежит акклимация (сдвиг температурного оптимума), когда происходит инактивация одних генов и включение других, отвечающих за замену одних ферментов другими. Это явление обнаруживается в разных частях ареала.

У растений метаболическое тепло крайне ничтожно, поэтому их существование определяется температурой воздуха в пределах местообитания. Растения адаптируются к перенесению достаточно больших колебаний температуры. Главным при этом является транспирация, охлаждающая поверхность листьев при перегреве; уменьшение листовой пластинки, подвижность листа, опушение, восковой налет. К холодным условия растения приспосабливаются с помощью формы роста (карликовость, подушковидный рост, шпалерность), окраски. Все это относится к физической терморегуляии. Физиологическая терморегуляция – это опад листвы, отмирание наземной части, перевод свободной воды в связанное состояние, накопление антифризов и т. д.).

Пойкилотермные животные имеют возможность испарительной терморегуляции, связанной с их перемещением в пространстве (земноводные, рептилии). Они выбирают наиболее оптимальные условия, производят много внутреннего (эндогенного) тепла в процессе сокращения мускулатуры или мышечной дрожи (разогревают мышцы во время передвижения). Животные имеют поведенческие адаптации (поза, укрытия, норы, гнезда).

Гомойтермные животные (птицы и млекопитающие) имеют постоянную температуру тела и мало зависят от температуры окружающей среды. Для них характерны адаптации, основанные на резком повышении окислительных процессов в результате совершенства нервной, кровеносной, дыхательной и других систем органов. У них существует биохимическая терморегуляция (при понижении температуры воздуха усиливается обмен липидов; усиливаются окислительные процессы, особенно в скелетных мышцах; есть специализированная бурая жировая ткань, в которой вся освобождающаяся химическая энергия идет на образование АТФ, а на обогревание организма; увеличивается объем потребляемой пищи). Но такая терморегуляция имеет климатические ограничения (невыгодна зимой, в полярных условия, летом в тропическом и экваториальном поясах).

Экологически выгодна физическая терморегуляция(рефлек-торное сужение и расширение кровеносных сосудов кожи, теплоизоляционное действие меха и перьев, противоточный теплообмен), т.к. осуществляется за счет сохранения тепла в теле (Чернова, Былова, 2004).

Поведенческая терморегуляция гомойтермов характеризуется разнообразием: изменение позы, поиски укрытий, сооружение сложных нор, гнезд, миграции, групповое поведение и пр.

Важнейшим экологическим фактором для организмов является свет. Процессы, протекающие под действием света - это фотосинтез (используется 1-5% падающего света), транспирация (используется 75% падающего света расходуется на испарение воды), синхронизация жизнедеятельности, движение, зрение, синтез витаминов.

Морфология растений и структура растительных сообществ организованы для наиболее эффективного восприятия солнечной энергии. Светоприемная поверхность растений Земного шара в 4 раза больше, чем поверхность планеты (Акимова, Хаскин, 2000). Для живых организмов имеет значение длина волн, т.к. лучи разной длины имеют разное биологическое значение: инфракрасное излучение (780 – 400 нм) действует на тепловые центры нервной системы, регулируя окислительные процессы, двигательные реакции и др, ультрафиолетовые лучи (60 - 390 нм) действуя на покровные ткани, способствуют выработке различных витаминов, стимулируют рост и размножение клеток.

Особое значение имеет видимый свет, т.к. для растений важен качественный состав света. В спектре лучей выделяют фотосинтетическую активную радиацию (ФАР). Длина волн этого спектра лежит в пределах 380 – 710 (370- 720 нм).

Сезонная динамика освещенности связана с закономерностями астрономического характера, сезонной климатической ритмикой данной местности и на разных широтах выражена по разному. Для нижних ярусов на эти закономерности налагается и фенологическое состояние растительности. Большое значение имеет суточный ритм изменения освещенности. Ход радиации нарушается изменениями состояния атмосферы, облачности и др. (Горышина,1979).

Растение представляет собой непрозрачное тело, которое частично отражает свет, поглощает и пропускает. В клетках и тканях листьев есть различные образования которые обеспечивают поглощение и пропускание света Для повышения продуктивности растения увеличивают общую площадь и количество фотосинтезирующих элементов, что достигается многоэтажным расположением листьев на растении; ярусным расположением растений в сообществе.

По отношению к силе освещения выделяют три группы: светолюбивые, тенелюбивые, теневыносливые, которые отличаются анатомо-морфологическими адаптациями (у светолюбивых растений листья - мельче, подвижные, опушенные, имеют восковой налет, толстую кутикулу, кристаллические выключения и др. у тенелюбивых - листья крупные, хлоропласты крупные и многочисленные); физиологическими адаптациями (разные значения световой компенсации).

Реакция на длину светового дня (продолжительность освещения) называется фотопериодизмом. У растений такие важные процессы как цветение, образование семян, рост, переход в состояние покоя, листопад связан с сезонными изменениями длины дня и температурой. Для цветения одних растений нужна длина дня свыше 14 часов, для других достаточно 7 часов, третьи цветут независимо от длины дня.

Для животных свет информационное значение. Прежде всего по суточной активности животные делятся на дневных, сумеречных, ночных. Органом, помогающим ориентироваться в пространстве, являются глаза. У разных организмов разное стереоскопическое зрение - у человека общее зрение 180 ° - стереоскопическое-140 ° , у кролика - общее 360 ° , стереоскопическое20 ° . Бинокулярное зрение в основном характерно для хищных животных (кошачьих и птиц). Кроме того, реакцией на свет определяется фототаксис (движение на свет),

размножение, навигация (ориентирование на положение Солнца), биолюминенценция. Свет является сигналом для привлечения особей другого пола.

Важнейшим экологическим фактором в жизни наземных организмов является вода. Она необходима для поддержания структурной целостности клеток, тканей, всего организма, т.к. является основной частью протоплазмы клеток, тканей, растительных и животных соков. Благодаря воде осуществляются биохимические реакции, поступление питательных веществ, газообмен, выделение и др. Содержание воды в организме растений и животных достаточно высокое (в листьях трав - 83-86%, листьях деревьев - 79-82%. стволах деревьев 40-55%, в телах насекомых - 46-92%, земноводных – до 93%, млекопитающих - 62-83%).

Существование в наземно-воздушной среде ставит перед организмами важную проблему сохранения воды в теле. Поэтому форма и функции растений и животных суши приспособлены к защите от иссушения. В жизни растений важно поступление воды, проведение ее и транспирация, водный баланс, (Вальтер, 1031,1937, Шафер, 1956). Изменения водного баланса лучше всего отражает сосущая сила корней.

Растение может всасывать воду из почвы до тех пор, пока сосущая сила корней может конкурировать с сосущей силой почвы. Сильно разветвленная корневая система обеспечивает большую площадь соприкосновения поглощающей части корня с почвенными растворами. Общая протяженность корней может достигать 60 км. Сосущая сила корней меняется в зависимости от погоды, от экологических свойств. Чем больше всасывающая поверхность корней, тем больше поглощается воды.

По регуляции водного баланса растения делятся на пойкилогидрические (водоросли, мхи, папоротники, некоторые цветковые) и гомойгидрические (большинство высших растений).

По отношению к водному режиму выделяют экологические группы растений.

1. Гигрофиты - наземные растения, обитающие во влажных местообитаниях с высокой влажностью воздуха и почвенным водоснабжением. Характерными признаками гигрофитов являются толстые слаборазветвленные корни, воздухоносные полости в тканях, открытые устьица.

2. Мезофиты-растения умеренно увлажненных местообитаний. Способность переносить почвенную и атмосферную засуху у них ограничены. Могут встречаться в засушливых местообитаниях - быстро развиваясь за короткий период. Характерна хорошо развитая корневая система с многочисленными корневыми волосками, регуляция интенсивности транспирации.

3. Ксерофиты - растения сухих местообитаний. Это засухоустойчиваые растения, сухотерпцы. Степные ксерофиты могут терять без ущерба до 25 % воды, пустынные - до 50% содержащейся в них воды (для сравнения лесные мезофиты увядают при потере 1% содержащейся в листьях воды). По характеру анатомо-морфологических и физиологических адаптаций, обеспечивающих активную жизнь этих растений при дефиците влаги, ксерофиты делятся на суккуленты (имеют мясистые и сочные листья и стебли, способны накапливать в тканях большое количество воды, развивают небольшую сосущую силу и впитывают влагу атмосферных осадков) и склерофиты (сухие на вид растения, интенсивно испаряющие влагу, имеют узкие и мелкие листья, которые иногда сворачиваются в трубочку, способны выдерживать сильное обезвоживание, сосущая сила корней может быть до нескольких десятков атмосфер).

У разных групп животных в процессе приспособления к условиям наземного существования главным было предотвращение потерь воды. Животные получают воду разными способами – через питье, с сочной пищей, в результате метаболизма (за счет окисления и расщепления жиров, белков и углеводов). Некоторые животные могут впитывать воду через покровы из влажного субстрата или воздуха. Потери воды происходят в результате испарения с покровов, испарения со слизистых оболочек дыхательных путей, выделения мочи и непереваренных остатков пищи. Животные, получающие воду через питье, зависят от расположения водоемов (крупные млекопитающие, многие птицы).

Важным фактором для животных является влажность воздуха, т.к. этот показатель определяет величину испарения с поверхности тела. Именно поэтому для водного баланса организма животных имеет значение строение покровов тела. У насекомых уменьшение испарения воды с поверхности тела обеспечивает почти непроницаемая кутикула и специализированные органы выделения (мальпигиевы трубочки), выделяющие почти нерастворимый продукт обмена, и дыхальца, уменьшающие потери воды через систему газообмена - через трахеи и трахеолы.

У амфибий основная масса воды в организм поступает через проницаемую кожу. Проницаемость кожи регулируется гормоном, который выделяется задней долей гипофиза. Амфибии выделяют очень большое количество разбавленной мочи, гипотоничной по отношению к жидкостям тела. В засушливых условиях амфибии могут уменьшать потери воды с мочой. Кроме того, эти животные могут накапливать воду в мочевом пузыре и подкожных лимфатических пространствах.

Рептилии обладают множеством адаптаций разного уровня - морфологических (потере воды препятствует ороговевшая кожа), физиологических (легкие, расположенные внутри тела, что снижает потери воды), биохимических (в тканях образуется мочевая кислота, которая выводится без большой потери влаги, ткани способны переносить повышение концентрации солей на 50%).

У птиц скорость испарения невелика (кожа относительно непроницаема для воды, отсутствуют потовые железы и перья). Птицы теряют воду (до 35% веса тела за сутки) при дыхании из-за высокой вентиляции в легких и высокой температурой тела. У птиц есть процесс реабсорбции воды из части воды из мочи и фекалий. У некоторых морских птиц (пингвины, олуши, бакланы, альбатросы), которые питаются рыбой и пьют морскую воду, есть солевые железы, расположенные в глазницах, с помощью которых выводится избыток солей из организма.

У млекопитающих органами выделения и осморегуляции служат парные сложно устроенные почки, которые снабжаются кровью и регулируют состав крови. Это обеспечивает постоянный состав внутриклеточной и внутритканевой жидкости. Относительно стабильное осмотическое давление крови поддерживается за счет баланса между поступлением воды с питьем и потерей воды с выдыхаемым воздухом, потом, выделяемыми калом и мочой. Ответственным за тонкую регуляцию осмотического давления является антидиуретический гормон (АДГ), который выделяется из задней доли гипофиза.

Среди животных выделяют группы: гигрофилов, у которых механизмы регуляции водного обмена слабо развиты или вообще отсутствуют (это влаголюбивые животные, нуждающиеся в высокой влажности среды - ногохвостки, мокрицы, комары, другие членистоногие, наземные моллюски и амфибии); ксерофилов, имеющих хорошо развитые механизмы регуляции водного обмена и приспособления к удержанию воды в теле, обитающих в засушливых условиях; мезофилов, обитающих в условиях умеренной влажности.

Косвенно действующим экологическим фактором в наземно-воздушной среде является рельеф. Все формы рельефа влияют на распространение растений и животных через изменение гидротермического режима или почвенно-грунтового увлажнения.

В горах на разной высоте над уровнем моря изменяются климатические условия, следствием чего является высотная поясность. Географическая изоляция в горах способствует образованию эндемиков, сохранению реликтовых видов растений и животных. Речные поймы способствую продвижению на север более южных группировок растений и животных. Большое значение имеет экспозиция склонов, которая создает условия для распространения на север по южным склонам теплолюбивых сообществ, а по северным склонам на юг холодолюбивых сообществ («правило предварения», В.В. Алехина).

Почва существует только в наземно-воздушной среде и формируется в результате взаимодействия возраста территории, материнской породы, климата, рельефа, растений и животных, деятельности человека. Экологическое значение имеет механический состав (размер минеральных частиц), химический состав (рН водного раствора), засоление почв, почвенное богатство. Характеристики почв также действуют на живые организмы как косвенные факторы, изменяя термо-гидрологический режим, вызывая у растений (в первую очередь) приспособления к динамике этих условий и влияя на пространственную дифференциацию организмов.

Особенностью наземно-воздушной среды является то, что организмы, обитающие здесь, окружены воздухом, который представляет собой смесь газов, а не их соединения. Воздух как экологический фактор характеризуется постоянством состава - азота в нем содержится 78,08%, кислорода - около 20,9%, аргона - около 1%, углекислого газа - 0,03%. За счет диоксида углерода и воды синтезируется органическое вещество и выделяется кислород. При дыхании происходит реакция, обратная фотосинтезу - потребление кислорода. Кислород появился на Земле примерно 2 млрд. лет назад, когда происходило формообразование поверхности нашей планеты при активной вулканической деятельности. Постепенное увеличение содержания кислорода происходило в течение последних 20 млн. лет. Главную роль в этом играло развитие растительного мира суши и океана. Без воздуха не могут существовать ни растения, ни животные, ни аэробные микроорганизмы. Большинство животных в этой среде передвигаются по твердому субстрату - почве. Воздух как газообразная среда жизни характеризуется низкими показателями влажности, плотности и давления, а также высоким содержанием кислорода. Действующие в наземно-воздушной среде экологические факторы отличаются рядом специфических особенностей: свет здесь по сравнению с другими средами интенсивнее, температура претерпевает более сильные колебания, влажность значительно изменяется в зависимости от географического положения, сезона и времени суток.

Приспособления к воздушной среде.

Наиболее специфичны среди обитателей воздушной среды, конечно летающие формы. Уже особенности внешности организма позволяют заметить его приспособления к полету. Прежде всего, об этом говорит форма его тела.

Форма тела:

  • · обтекаемость тела (птица),
  • · наличие плоскостей для опоры на воздух (крылья, парашют),
  • · облегченная конструкция (полые кости),
  • · наличие крыльев и иных приспособлений для полета (летательные перепонки, например),
  • · облегчение конечностей (укорочение, уменьшение массы мышц).

У бегающих животных тоже появляются отличительные особенности, по которым легко узнать хорошего бегуна, а если он передвигается прыжками, то прыгуна:

  • · мощные, но легкие конечности (лошадь),
  • · уменьшение пальцев на ногах (лошадь, антилопа),
  • · очень мощные задние конечности и укороченные передние (заяц, кенгуру),
  • · защитные роговые копыта на пальцах (копытные, мозоленогие).

Лазающие организмы имеют самые различные приспособления. Они могут быть общими для растений и животных, а могут и различаться. Для лазанья может быть использована и своеобразная форма тела:

  • · тонкое длинное тело, петли которого могут служить опорой при лазании (змея, лиана),
  • · длинные гибкие хватательные или цепляющиеся конечности, а возможно, и такой же хвост (обезьяны);
  • · выросты тела - усики, крючки, корешки (горох, ежевика, плющ);
  • · острые коготки на конечностях или длинные когти, загнутые крючком или сильные хватательные пальцы (белка, ленивец, обезьяна);
  • · мощные мышцы конечностей, позволяющие подтягивать тело и перебрасывать его с ветки на ветку (орангутанг, гиббон).

Некоторые организмы приобрели своеобразную универсальность приспособлений сразу к двум. У лазающих форм возможно и сочетание признаков лазанья и полета. Многие из них могут, забравшись на высокое дерево совершать длинные прыжки-полеты. Это сходные приспособления у жителей одной среды обитания. Часто встречаются животные способные к быстрому бегу и полету, одновременно несущие оба набора этих адаптаций.

Встречаются сочетания приспособительных признаков у организма к жизни в различных средах. Такие параллельные наборы адаптаций несут все земноводные животные. Приспособления к полету имеют и некоторые плавающие чисто водные организмы. Вспомним летучих рыб или даже кальмаров. Для решения одной экологической задачи могут быть использованы разные адаптации. Так, средством термоизоляции у медведей, песцов служит густой мех, покровительственная окраска. Благодаря покровительственной окраске организм становится трудно различимым и, следовательно, защищенным от хищников. Яйца птиц, откладываемые на песок или на землю, имеют серый и бурый цвет с пятнышками, сходный с цветом окружающей почвы. В тех случаях, когда яйца недоступны для хищников, они обычно лишены окраски. Гусеницы бабочек часто зеленые, под цвет листьев, или темные, под цвет коры или земли. Животные пустынь, как правило, имеют желто-бурую или песочно-желтую окраску. Однотонная покровительственная окраска свойственна как насекомым (саранча) и мелким ящерицам, так и крупным копытным (антилопы) и хищникам (лев). Расчленяющая покровительственная окраска в виде чередования на теле светлых и темных полос и пятен. Зебры и тигр плохо видны уже на расстоянии 50 - 40 м из-за совпадения полос на теле с чередованием света и тени в окружающей местности. Расчленяющая окраска нарушает представления о контурах тела, отпугивающая (предостерегающая) окраска - также обеспечивает защиту организмов от врагов. Яркая окраска обычно характерна для ядовитых животных и предупреждает хищников о несъедобности объекта их нападения. Эффективность предостерегающей окраски послужила причиной очень интересного явления-подражания - мимикрии. Образования в виде твердого хитинового покрова у членистоногих (жуки, крабы), раковин у моллюсков, чешуи у крокодилов, панциря у броненосцев и черепах хорошо предохраняют их от многих врагов. Этому же служат иглы ежа и дикобраза. Совершенствование аппарата движения, нервной системы, органов чувств, развитие средств нападения у хищных. Поразительно чувствительны органы химического чувства насекомых. Самцов непарного шелкопряда привлекает запах ароматической железы самки с расстояния 3 км. У некоторых бабочек чувствительность рецепторов вкуса в 1000 раз превосходит чувствительность рецепторов человеческого языка. Ночные хищники, например совы, прекрасно видят в темноте. У некоторых змей хорошо развита способность к термолокации. Они различают на расстоянии объекты, если разница их температур составляет всего 0,2 °С.

Наземно-воздушная среда обитания является значительно более сложной по своим экологическим условиям, чем водная среда. Для жизни на суше, как растениям, так и животным, потребовалось выработать целый комплекс принципиально новых адаптационных приспособлений.

Плотность воздуха в 800 раз меньше чем плотность воды, поэтому жизнь во взвешенном состоянии в воздухе практически невозможна. Только бактерии, споры грибов и пыльца растений регулярно присутствуют в воздухе, и способны переносится на значительные расстояния воздушными течениями, однако у всех главная функция жизненного цикла – размножение осуществляется на поверхности земли, где имеются питательные вещества. Обитатели суши вынуждены обладать развитой опорной системой,

поддерживающей тело. У растений это разнообразные механические ткани, животные обладают сложным костным скелетом. Малая плотность воздуха определяет низкую сопротивляемость передвижению. Поэтому многие наземные животные смогли использовать в ходе своей эволюции экологические выгоды данной особенности воздушной среды и приобрели способность к кратковременному или длительному полёту. Возможностью перемещаться в воздухе обладают не только птицы и насекомые, но даже отдельные млекопитающие и рептилии. В целом, активно летать или планировать за счёт воздушных течений могут не менее 60 % видов наземных животных.

Жизнь многих растений во многом зависит от движения воздушных потоков, так как именно ветром разносится их пыльца и происходит опыление. Такой способ опыления называется анемофилией . Анемофилия свойственна для всех голосеменных растений, а среди покрытосеменных, ветроопыляемые составляют не менее 10 % от общего количества видов. Для многих видов свойственна анемохория – расселение с помощью воздушных потоков. При этом перемещаются не половые клетки, а зародыши организмов и молодые особи – семена и мелкие плоды растений, личинки насекомых, мелкие пауки и др. Анемохорные семена и плоды растений обладают либо очень маленькими размерами (например семена орхидей), либо различными крыловидными и парашютовидными придатками, благодаря которым возрастает способность к планированию. Пассивно переносимые ветром организмы получили собирательное название аэропланктона по аналогии с планктонными обитателями водной среды.

Малая плотность воздуха обуславливает очень низкое давление на суше, по сравнению с водной средой. На уровне моря оно составляет 760 мм рт. ст. По мере возрастания высоты, давление уменьшается и на высоте примерно 6000 м составляет только половину от той величины, которая обычно наблюдается у поверхности Земли. Для большинства позвоночных животных и растений это верхняя граница распространения. Низкое давление в горах приводит к уменьшению обеспеченности кислородом и обезвоживанию животных за счёт увеличения частоты дыхания. В целом, подавляющее большинство наземных организмов в гораздо большей степени чувствительны к изменению давления, чем водные обитатели, так как обычно колебания давления в наземной среде не превышают десятые доли атмосферы. Даже крупные птицы, способные подниматься на высоты более 2 км попадают в условия, в которых давление не более чем на 30 % отличается от приземного.

Кроме физических свойств воздушной среды, для жизни наземных организмов весьма важны также её химические особенности. Газовый состав воздуха в приземном слое атмосферы повсеместно однороден, за счёт постоянного перемешивания воздушных масс конвекционными и ветровыми потоками. На современном этапе эволюции атмосферы Земли, в составе воздуха преобладает азот (78 %) и кислород (21 %), далее следуют инертный газ аргон (0.9 %) и углекислый газ (0.035 %). Более высокое содержание кислорода в наземно-воздушной среде обитания, по сравнению с водной средой, способствует возрастанию у наземных животных уровня обмена веществ. Именно в наземной среде возникли физиологические механизмы, на основе высокой энергетической эффективности окислительных процессов в организме, обеспечивающие млекопитающим и птицам возможность поддерживать на постоянном уровне температуру своего тела и двигательную активность, что дало им возможность обитать те только в тёплых, но и в холодных регионах Земли. В настоящее время кислород, по причине своего высокого содержания в атмосфере, не принадлежит к числу факторов ограничивающих жизнь в наземной среде. Однако в почве при определённых условиях может возникнуть его дефицит.

Концентрация углекислого газа может изменяться в приземном слое в достаточно значительных пределах. Например, при отсутствии ветра в крупных городах и промышленных центрах содержание этого газа может в десятки раз превышать концентрацию в естественных ненарушенных биоценозах, за счёт его интенсивно выделения при сжигании органического топлива. Повышенные концентрации углекислого газа могут возникать также в зонах вулканической активности. Высокие концентрации СО 2 (более 1 %) токсичны для животных и растений, однако низкое содержание этого газа (менее 0.03 %) тормозит процесс фотосинтеза. Основным природным источником СО 2 является дыхание почвенных организмов. Углекислый газ поступает из почвы в атмосферу, причём особенно интенсивно его выделяют умеренно влажные, хорошо прогреваемые почвы со значительным количеством органического материала. Например, почвы букового широколиственного леса выделяют от 15 до 22 кг/га углекислоты в час, песные песчаные почвы – не более 2 кг/га. Наблюдаются суточные изменения в содержании углекислого газа и кислорода в приземных слоях воздуха, обусловленные ритмом дыхания животных и фотосинтеза растений.

Азот, представляющий собой основной компонент воздушной смеси, для большинства обитателей наземно-воздушной среды является недоступным к непосредственному усвоению в силу своих инертных свойств. Только некоторые прокариотические организмы, среди которых клубеньковые бактерии и сине-зеленые водоросли обладают способностью поглощать азот из воздуха и вовлекать его в биологический круговорот веществ.

Важнейшим экологическим фактором в наземных местообитаниях является солнечный свет. Всем живым организмам для своего существования необходима энергия, поступающая из вне. Основным её источником является солнечный свет, на долю которого приходится 99.9 % в общем балансе энергии на поверхности Земли, а 0.1 % – это энергия глубинных слоёв нашей планеты, роль которой достаточна высока только в отдельных районах интенсивной вулканической деятельности, например в Исландии или на Камчатке в Долине гейзеров. Если принять солнечную энергию достигающую поверхности атмосферы Земли за 100 %, то около 34 % отражается обратно в Космическое пространство, 19 % поглощается при прохождении через атмосферу, и только 47 % достигает наземно-воздушных и водных экосистем в виде прямой и рассеянной лучистой энергии. Прямая солнечная радиация – это электромагнитное излучение с длинами волн от 0.1 до 30.000 нм. Доля рассеянной радиации в виде отражённых от облаков и поверхности Земли лучей возрастает с уменьшением высоты стояния Солнца над горизонтом и при возрастании содержания в атмосфере частиц пыли. Характер воздействия солнечных лучей на живые организмы зависит от их спектрального состава.

Ультрафиолетовые коротковолновые лучи с длинами волн менее 290 нм губительны для всего живого, т.к. обладают способностью ионизировать, расщеплять цитоплазму живых клеток. Эти опасные лучи на 80 – 90 % поглощаются озоновым слоем, расположенным на высотах от 20 до 25 км. Озоновый слой, представляющий собой совокупность молекул О 3 , образуется в результате ионизации молекул кислорода и является, таким образом, продуктом фотосинтетической деятельности растений в глобальном масштабе. Это своеобразный ""зонтик"" прикрывающий наземные сообщества от губительного ультрафиолета. Предполагается, что он возник около 400 млн. лет назад, за счёт выделения кислорода при фотосинтезе океанических водорослей, что дало возможность развиваться жизни на суше. Длинноволновые ультрафиолетовые лучи с длиной волн от 290 до 380 нм также обладают высокой химической активностью. Длительное и интенсивное их воздействие наносит вред организмам, но малые дозы многим из них необходимы. Лучи с длинами волн около 300 нм вызывают образование витамина D у животных, с длинами от 380 до 400 нм – приводят к появлению загара как защитной реакции кожи. В область видимых солнечных лучей, т.е. воспринимаемых человеческим глазом, входят лучи с длинами волн от 320 до 760 нм. В пределах видимой части спектра находится зона фотосинтетически активных лучей – от 380 до 710 нм. Именно в данном диапазоне световых волн осуществляется процесс фотосинтеза.

Свет и его энергия, во многом определяющая температуру среды конкретного местообитания, влияют на газообмен и испарение воды листьями растений, стимулирует работу ферментов синтеза белков и нуклеиновых кислот. Растениям свет необходим для образования пигмента хлорофилла, формирования структуры хлоропластов, т.е. структур ответственных за фотосинтез. Под влиянием света происходит деление и рост клеток растений, их цветение и плодоношение. Наконец, от интенсивности света в конкретном местообитании зависит распространение и численность определённых видов растений, а, следовательно, и структура биоценоза. При низкой освещённости, например под пологом широколиственного или елового леса, или в утренние и вечерние часы, свет становится важным лимитирующим фактором, способным ограничивать фотосинтез. В ясный летний день на открытом местообитании или в верхней части кроны деревьев в умеренных и низких широтах освещённость может достигать 100.000 люкс, тогда как для успеха протекания фотосинтеза достаточно и 10.000 люкс. При очень большой освещённости начинается процесс обесцвечивания и разрушения хлорофилла, что существенно замедляет выработку первичного органического вещества в процессе фотосинтеза.

Как известно, в результате фотосинтеза поглощается углекислый газ и выделяется кислород. Однако в процессе дыхания растения днём, и в особенности ночью, кислород поглощается, а CO 2 , наоборот, выделяется. Если постепенно увеличивать интенсивность света, то соответственно будет возрастать и скорость фотосинтеза. Со временем наступит такой момент, когда фотосинтез и дыхание растения будут точно уравновешивать друг друга и выработка чистого биологического вещества, т.е. не потреблённого самим растением в процессе окисления и дыхания для своих нужд, прекратиться. Данное состояние, при котором суммарный газообмен CO 2 и O 2 равен 0 называется точкой компенсации .

Вода – это одно из абсолютно необходимых веществ для успешного течения процесса фотосинтеза и её недостаток отрицательно сказывается на течении множества клеточных процессов. Даже недостаток влаги в почве в течение нескольких дней может привести к серьёзным потёрям в урожае, т.к. в листьях растений начинает накапливаться вещество препятствующее росту тканей – абсцизовая кислота.

Оптимальной для фотосинтеза большинства растений умеренного пояса является температура воздуха около 25 ºС. При более высоких температурах скорость фотосинтеза замедляется в связи с ростом затрат на дыхание, потерей влаги в процессе испарения для охлаждения растения и уменьшением потребления CO 2 в связи со снижением газообмена.

У растений возникают различные морфологические и физиологические адаптации к световому режиму наземно-воздушной среды обитания. По требованиям к уровню освещения все растения принято делить на следующие экологические группы.

Светолюбивые или гелиофиты – растения открытых, постоянно хорошо освещаемых местообитаний. Листья гелиофитов обычно мелкие или с рассечённой листовой пластинкой, с толстой наружной стенкой клеток эпидермиса, нередко с восковым налётом для частичного отражения избыточной световой энергии или с густым опушением позволяющим эффективно рассеивать тепло, с большим количеством микроскопических отверстий – устьиц, с помощью которых происходит газо- и влагообмен со средой, с хорошо развиты механическими тканями и тканями способными запасать воду. Листья некоторых растений из данной группы обладают фотометричностью, т.е. способны менять своё положение в зависимости от высоты Солнца. В полдень листья располагаются ребром к светилу, а утром и вечером – параллейно к его лучам, что предохраняет их от перегрева и позволяет использовать свет и солнечную энергию в необходимой мере. Гелиофиты входят в состав сообществ практически всех природных зон, но наибольшее их количество встречается в экваториальной и тропической зоне. Это растения дождевых тропических лесов верхнего яруса, растения саванн Западной Африки, степей Ставрополья и Казахстана. Например, к ним принадлежат кукуруза, просо, сорго, пшеница, гвоздичные, молочайные.

Тенелюбивые или сциофиты – растения нижних ярусов леса, глубоких оврагов. Они способны обитать в условиях значительного затенения, которое для них является нормой. Листья сциофитов располагаются горизонтально, обычно они имеют тёмно-зелёный цвет и более крупные размеры, по сравнению с гелиофитами. Клетки эпидермиса крупные, но с более тонкими наружными стенками. Хлоропласты крупные, но число их в клетках невелико. Число устьиц на единицу площади меньше чем у гелиофитов. К тенелюбивым растениям умеренной климатического пояса принадлежат мхи, плауны, травы из семейства имбирные, кислица обыкновенная, майник двулистный и др. Также к ним относятся многие растения нижнего яруса тропической зоны. Мхи как растения самого низкого лесного яруса, могут жить при освещённости до 0.2 % от общей на поверхности лесного биоценоза, плауны – до 0.5 %, а цветковые могут нормально развиваться только при освещенности не менее 1 % от общей. У сциофитов с меньшей интенсивностью протекают процессы дыхания и влагообмена. Интенсивность фотосинтеза быстро достигает максимума, но при значительном освещении начинает снижаться. Компенсационная точка располагается в условиях пониженной освещённости.

Теневыносливые растения могут переносить значительное затенение, но хорошо растут и на свету, адаптированы к значительной сезонной динамике освещённости. К этой группе принадлежат луговые растения, лесные травы и кустарники, растущие в затенённых участках. На интенсивно освещаемых участках они растут быстрее, но вполне нормально развиваются и при умеренном освещении.

Отношение к световому режиму меняется у растений на протяжении их индивидуального развития – онтогенеза. Проростки и молодые растения многих луговых трав и деревьев являются более теневыносливыми, чем взрослые особи.

В жизни животных видимая часть светового спектра также играет довольно важную роль. Свет для животных – это необходимое условие зрительной ориентации в пространстве. Примитивные глазки многих беспозвоночных представляют собой просто отдельные светочувствительные клетки, позволяющие воспринимать некоторые колебания освещённости, чередование света и тени. Пауки могут различать контуры движущихся предметов на расстоянии не более 2 см. Гремучие змеи способны видеть инфракрасную часть спектра и в состоянии охотиться в полной темноте, ориентируясь на тепловые лучи жертвы. У пчёл видимая часть спектра сдвинута в более коротковолновую область. Они воспринимают как цветные значительную часть ультрафиолетовых лучей, но не различают красных. Способность к восприятию цветовой гаммы зависит от того, при каком спектральном составе активен данный вид. Большинство млекопитающих ведущих сумеречный или ночной образ жизни плохо различают цвета и видят мир в чёрно-белых тонах (представители семейств собачьи и кошачьи, хомяки и др.). Жизнь в сумерках приводит к увеличению размеров глаз. Огромные глаза, способные улавливать ничтожные доли света, свойственны ведущим ночной образ жизни лемурам, долгопятам, совам. Наиболее совершенными органами зрения обладают головоногие моллюски и высшие позвоночные. Они могут адекватно воспринимать форму и размеры предметов, их цвет, определять расстояние до объектов. Самое совершенное объёмное бинокулярное зрение характерно для человека, приматов, хищных птиц – сов, соколов, орлов, грифов.

Положение Солнца является важным фактором навигации различных животным в период дальних миграций.

Условия обитания в наземно-воздушной среде осложнены погодными и климатическими изменениями. Погода – это непрерывно меняющееся состояние атмосферы около земной поверхности до высоты примерно 20 км (верхняя граница тропосферы). Изменчивость погоды проявляется в постоянных колебаниях значений важнейших факторов среды, таких как температура и влажность воздуха, количество жидкой воды выпадающей на поверхность почвы за счёт атмосферных осадков, степень освещённости, скорость ветрового потока и др. Для погодных характеристик свойственны не только достаточно очевидные сезонные изменения, но и непериодические случайные колебания в течение относительно коротких промежутков времени, а также и в суточном цикле, что в особенности негативно сказывающиеся на жизни обитателей суши, так как к этим колебаниям чрезвычайно трудно выработать эффективные адаптации. На жизнь обитателей крупных водоёмов суши и морей погода влияет в значительно меньшей степени, затрагивая только поверхностные биоценозы.

Многолетний режим погоды характеризует климат местности. В понятие климата входят не только осреднённые за длительный временной интервал значения важнейших метеорологических характеристик и явлений, но и их годовой ход, а также вероятность отклонения от нормы. Климат зависит, прежде всего, от географических условий региона – широты местности, высоты над уровнем моря, близостью к Океану и др. Зональное разнообразие климатов зависит также от влияния муссонных ветров, несущих теплые влажные воздушные массы с тропических морей на континенты, от траекторий движения циклонов и антициклонов, от влияния горных массивов на движение воздушных масс, и от многих других причин, создающих чрезвычайное разнообразие условий жизни на суше. Для большинства наземных организмов, в особенности для растений и мелких осёдлых животных, важны не столько крупномасштабные особенности климата той природной зоны, в которой они живут, а те условия, которые создаются в их непосредственном местообитании. Такие локальные модификации климата, создающиеся под влиянием многочисленных явлений имеющих локальное распространение, называют микроклиматом . Широко известны различия между температурой и влажностью лесных и луговых местообитаний, на северных и южных склонах холмов. Устойчивый микроклимат возникает в гнездах, дуплах, пещерах и норах. Например в снежной берлоге белого медведя, к моменту появления детёныша, температура воздуха может на 50 °С превышать температуру окружающей среды.

Для наземно-воздушной среды, свойственны значительно большие колебания температуры в суточном и сезонном цикле, чем для водной. На обширных пространствах умеренных широт Евразии и Северной Америки, находящихся на значительном отдалёнии от Океана, амплитуда температуры в годовом ходе может достигать 60 и даже 100 °С, за счёт очень холодной зимы и жаркого лета. Поэтому основу флоры и фауны в большинстве континентальных районов составляют эвритермные организмы.

Литература

Основная – Т.1 – с. 268 – 299; – c. 111 – 121; Дополнительная ; .

Вопросы для самопроверки:

1. В чём состоят основные физические отличия наземно-воздушной среды обитания

от водной?

2. От каких процессов зависит содержание углекислого газа в приземном слое атмосферы

и в чём состоит его роль в жизни растений?

3. В каком диапазоне лучей светового спектра осуществляется фотосинтез?

4. Каково значение озонового слоя для обитателей суши, как он возник?

5. От каких факторов зависит интенсивность фотосинтеза растений?

6. Что такое точка компенсации?

7. В чём состоят характерные особенности растений-гелиофитов?

8. В чём состоят характерные особенности растений-сциофитов?

9. Какова роль солнечного света в жизни животных?

10. Что такое микроклимат и как он формируется?

Тип урока - комбинированный

Методы: частично-поисковый, про-блемного изложения, репродуктивный, объясни-тельно-иллюстративный.

Цель:

Осознание учащимися значимости всех обсуждаемых вопросов, умение строить свои отношения с природой и обществом на основе уважения к жизни, ко всему живому как уникальной и бесценной части биосферы;

Задачи:

Образовательные : показать множественность факторов, действующих на организмы в природе, относительность понятия «вредные и полезные факторы», многообразие жизни на планете Земля и варианты адаптаций живых существ ко всему спектру условий среды обитания.

Развивающие: развивать коммуникативные навыки, умения самостоятельно добывать знания и стимулировать свою познавательную активность; умения анализировать информацию, выделять главное в изучаемом материале.

Воспитательные:

Воспитывать культуру поведения в природе, качества толерантной личности, прививать интерес и любовь к живой природе, формировать устойчивое положительное отношение к каждому живому организму на Земле, формировать умение видеть прекрасное.

Личностные : познавательный интерес к экологии.. Понимание не-обходимости получения знаний о многообразии биотических связей в природных со-обществах для сохранения естественных биоценозов. Способность выбирать целевые и смысловые установки в своих действиях и поступках по отношению к живой природе. Потребность в справедливом оценивании своей работы и работы одноклассников

Познавательные : умение работать с различными источниками информации, пре-образовывать её из одной формы в другую, сравнивать и анализировать информацию, делать выводы, готовить сообщения и презентации.

Регулятивные: умение организовать самостоятельно выполнение заданий, оценивать правильность выполнения работы, рефлексию своей деятельности.

Коммуникативные : участвовать в диалоге на уроке; отвечать на вопросы учителя, товари-щей по классу, выступать перед аудиторией, используя мультимедийное оборудование или другие средства демонстрации

Планируемые результаты

Предметные: знать - понятия «среда обитания», «экология», «экологические факторы» их влияние на живые организмы, «связи живого и неживого»;. Уметь - определять понятие «биотические факторы»; характеризовать биотические факторы, приводить примеры.

Личностные: высказывать суждения, осуществлять поиск и отбор информации;анализировать связи, сопоставлять, находить ответ на проблемный вопрос

Метапредметные : связи с такими учебными дисциплинами как биология, химия, физика, география. Планировать действия с поставленной целью; находить необходимую информацию в учебнике и справочной литературе; осуществлять анализ объектов природы; делать выводы; сформулировать собственное мнение.

Форма организации учебной деятельности - индивидуальная, групповая

Методы обучения: наглядно-иллюстративный, объяснительно-иллюстративный, частично-поисковый, самостоятельная работа с дополнительной литературой и учебником, с ЦОР.

Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.

Изучение нового материала

Наземно-воздушная среда

Организмы, обитающие на поверхности Земли, окружены га-зообразной средой, характеризующейся низкой влажностью, плотностью и давлением, а также высоким содержанием кисло-рода. Действующие в наземно-воздушной среде экологические факторы отличаются рядом специфических особенностей: по сравнению с другими средами свет здесь действует интенсивнее, температура претерпевает более сильные колебания, влажность значительно изменяется в зависимости от географического поло-жения, сезона и времени суток. Воздействие почти всех этих факторов тесно связано с движением воздушных масс - ветрами.

У обитателей наземно-воздушной среды в процессе эволюции выработались специфические анатомо-морфологические, физиоло-гические, поведенческие и другие адаптации. У них появились ор-ганы, обеспечивающие непосредственное усвоение атмосферного воздуха в процессе дыхания (устьица растений, легкие и трахеи животных); сильное развитие получили скелетные образования, поддерживающие тело в условиях незначительной плотности среды


(механические и опорные ткани растений, скелет животных); вы-работались сложные приспособления для защиты от неблагопри-ятных факторов (периодичность и ритмика жизненных циклов, сложное строение покровов, механизмы терморегуляции и др.); установилась более тесная связь с почвой (корни растений); вы-работалась большая подвижность животных в поисках пищи; появились летающие животные и переносимые воздушными тече-ниями плоды, семена, пыльца растений.

Рассмотрим основные абиотические факторы в наземно--воздушной среде жизни.

Воздух.

Сухой воздух на высоте уровня моря состоит (по объему) из 78% азота, 21% кислорода, 0,03% углекислого газа; не менее 1% приходится на инертные газы.

Кислород необходим для дыхания абсолютного большинства ор-ганизмов, углекислый газ используется растениями при фотосинтезе. Перемещение воздушных масс (ветер) изменяет температуру и влаж-ность воздуха, оказывает механическое воздействие на организмы. Ветер вызывает изменение транспирации у растений. Это особенно сильно проявляется при суховеях, иссушающих воздух и часто вызы-вающих гибель растений. Значительную роль ветер играет в опыле-нии анемофилов - ветроопыляемых расте-ний. Ветры определяют направление миграций таких насекомых, как луговой мотылек, пустынная саранча, малярийные комары.

Атмосферные осадки.

Осадки в виде дождя, снега или града изменяют влажность воздуха и почвы, обеспечивают доступной влагой растения, дают питьевую воду животным. Сильные дожди могут вызывать паводки, временно затопить ту или иную территорию. Ливни, и особенно град, нередко приводят к механическому повреждению вегетатив-ных органов растений.

Большое значение для водного режима имеют сроки выпадения дождей, их частота и продолжительность. Также важен характер дождей. При ливневых дождях почва не ус-певает впитать воду. Эта вода быстро стекает, и ее сильные потоки нередко сносят в реки и озера часть плодородного слоя почвы, а вместе с ней и слабо укоренившиеся растения, а иногда и мелких животных. Моросящие дожди, наоборот, хорошо увлажняют почву, однако, если они затягиваются, наступает переувлажнение.

Осадки в виде снега оказывают благоприятное влияние на ор-ганизмы в зимний период времени. Являясь хорошим изолятором, снег защищает почву и растительность от промерзания (слой сне-га в 20 см защищает растение при температуре воздуха -25°С), а для мелких животных служит укрытием, где они находят пищу и более подходящие температурные условия. При сильных морозах под снегом прячутся тетерева, куропатки, рябчики. Однако при многоснежных зимах наблюдается массовая гибель некоторых животных, например, косуль и диких кабанов: при мощном снежном покрове им трудно передвигаться и добывать корм.

Влажность почв.

Одним из основных источников влаги для растений является почвенная вода. По физическому состоянию, подвижности, доступ-ности и значению для растений почвенная вода подразделяется на свободную, капиллярную, химически и физически связанную.

Основной разновидностью свободной воды является гравитаци-онная вода. Она заполняет широкие промежутки между частицами почвы и под действием силы тяжести постоянно уходит в более глу-бокие слои, пока не достигнет водонепроницаемого слоя. Растения легко усваивают ее, пока она находится в зоне корневой системы.

Капиллярная вода заполняет тончайшие промежутки между частицами почвы, она также хо-рошо усваивается растениями. Она удерживается в капиллярах силой сцепления. Под влиянием испарения с поверхности почвы капиллярная вода образует восходящий ток, в отличие от грави-тационной, которой свойственен нисходящий ток. Эти движения воды, ее расход зависят от температуры воздуха, особенностей рельефа, свойств почвы, растительного покрова, силы ветра и других факторов. И капиллярная, и гравитационная вода пред-ставляют собой так называемую доступную для растений воду.

В почве есть также химически и физически связанная вода, содержащаяся в некоторых минералах почв (опале, гипсе, монт риллоните, гидрослюдах и пр.) Вся эта вода растениям абсолютно не-доступна, хотя в некоторых почвах (глинистых, торфяных) ее содер-жание очень велико.

Экоклимат.

Каждое местообитание характеризуется определенным эколо-гическим климатом - экоклиматом, т. е. климатом приземного слоя воздуха. Большое влияние на климатические факторы ока-зывает растительность. Под пологом леса, например, влажность воздуха всегда выше, а колебания температуры меньше, чем на полянах. Различен и световой режим этих мест. В разных расти-тельных ассоциациях формируется свой режим влажности, тем-пературы, света. Тогда говорят о фитоклимате.

Условия жизни, окружающие личинок насекомых, живущих под корой дерева, иные, чем в лесу, где это дерево произрастает. При этом температура южной стороны ствола может быть на 10- 15°С выше температуры его северной стороны. Такие небольшие участки местообитания имеют свой микроклимат. Особые микро-климатические условия создают не только растения, но и живот-ные. Устойчивым микроклиматом обладают заселенные живот-ными норы, дупла деревьев, пещеры.

Для наземно-воздушной среды так же, как и для водной, ха-рактерна четко выраженная зональность. Различают широтные и меридианальные, или долготные, природные зоны. Первые тянут-ся с запада на восток, вторые - с севера на юг.

Вопросы и задания

1.Охарактеризуйте основные абиотические факторы на-земно-воздушной среды.

2.Приведите примеры обитателей наземно-воздушной среды.