Вес солнца и луны. Основные показатели спутника Земли: масса Луны, диаметр, особенности движения и исследования

Фото: Луна – естественный спутник Земли и неповторимый инопланетный мир, в котором побывало человечество.

Луна

Характеристики Луны

Луна вращается вокруг Земли по орбите, большая полуось которой равна 383000 км (эллиптичность 0,055). Плоскость лунной орбиты наклонена к плоскости эклиптики под углом 5°09. Период вращения равен 27 суток 7 часов 43 минуты. Это сидерический или звездный период. Период синодический – период смены лунных фаз – равен 29 суток 12 часов 44 минуты. Период вращения Луны вокруг своей оси равен сидерическому периоду. Поскольку время одного оборота Луны вокруг Земли точно равно времени одного оборота ее вокруг оси, Луна всегда обращена к Земле одной и той же стороной. Луна – самый заметный объект на небе после Солнца . Максимальная звездная величина равна – 12,7m.

Масса спутника Земли составляет 7,3476*1022 кг (в 81,3 раз меньше массы Земли), средняя плотность p = 3,35 г/см3, экваториальный радиус – 1 737 км. Стягивание с полюсов почти не имеется. Ускорение свободного падения на поверхности составляет g = 1,63 м/с2. Тяготение Луны не смогло удержать ее атмосферу, если она когда-то и была.

Внутреннее строение

Плотность Луны сравнима с плотностью земной мантии. Поэтому у Луны или нет, или очень малозначимое железное ядро . Внутреннее строение Луны изучено по сейсмическим данным, переданным на Землю устройствами космических экспедиций «Аполлон». Толщина коры Луны 60–100 км.

Фото: Луна - внутреннее строение

Толщина верхней мантии 400 км. В ней сейсмические скорости находятся в зависимости от глубины и сокращаются в связи от расстояния. Толщина средней мантии около 600 км. В средней мантии сейсмические скорости неизменны. Нижняя мантия расположена ниже 1100 км. Ядро Луны, начинающееся на глубине 1500 км, вероятно, жидкое. Оно практически не включает в себя железо. В следствии этого Луна обладает весьма слабым магнитным полем, не превышающее одной десятитысячной части земного магнитного поля. Зарегистрированы местные магнитные аномалии.

Атмосфера

Атмосферы на Луне фактически нет. Это объясняет внезапные перепады температур в несколько сотен градусов. В дневное время температура на поверхности достигает 130 C, а ночью она снижается до –170 C. В то же время на глубине 1 м температура почти всегда неизменная. Небо над Луной всегда черное, поскольку для образования голубого цвета неба необходим воздух , который там отсутствует. Нет там и погоды, не дуют и ветры. Кроме того, на Луне царит полная тишина .

Фото: поверхность Луны и ее атмосфера

Видимая часть

С Земли прослеживается только видимая часть Луны . Но это не 50% поверхности, а малость больше. Луна обращается вокруг Земли по эллипсу , около перигея Луна передвигается быстрее, а около апогея – медленнее. Но вокруг оси Луна вращается равномерно. Вследствие этого образуется колебание по долготе. Вполне вероятная максимальная величина ее составляет 7°54. Вследствие либрации мы имеем шанс наблюдать с Земли кроме видимой стороны Луны еще и прилегающие к ней узкие полосы территории оборотной ее стороны. В общей сложности с Земли можно увидеть 59% лунной поверхности.

Луна в ранние времена

Есть предположение, что в ранние времена своей истории Луна обращалась вокруг оси быстрее и, стало быть, поворачивалась к Земле различными частями своей поверхности. Но из-за близости массивной Земли в твердом теле Луны зарождались внушительные приливные волны. Процесс торможения Луны длился до тех пор, пока она не оказалась неизменно повернутой к нам лишь одной стороной.

Луна - это природный спутник планеты Земля, который считается единственным ближайшим к ней небесным телом. Ученые полагают, что расстояние между Землей и ее спутником составляет порядка 384 тыс. км.

Что нужно знать о спутнике Земли?

Для того чтобы иметь общее представление об этом небесном теле, необходимо рассмотреть ряд его особенностей: это объем спутника, его диаметр, площадь поверхности и масса Луны.

Двигается Луна по эллиптической орбите, и скорость ее движения составляет приблизительно 1,02 км/сек. Если наблюдать за Луной со стороны Северного полюса Земли, то окажется, что она двигается в том же направлении, что и большинство других видимых небесных тел, то есть против часовой стрелки. Сила тяготения на Луне составляет 1,622 м/с².

Многих ученых и астрономов издревле интересовали такие показатели, как удаленность спутника от Земли, его влияние на климат, масса Луны и другие характеристики. Процесс изучения небесных тел, кстати, начался давно.

Изучение Луны в древности

Луна - очень яркое небесное тело, которое просто не могло не привлекать внимание ученых в древние времена. Астрономы еще тысячелетия назад интересовались, чему равна масса Луны, как происходили смены ее фаз.

Ни для кого не секрет, что многие народы даже поклонялись этому небесному телу. Астрономы Древнего Вавилона сумели вычислить смену лунных фаз с большой точностью. Ученые двадцатого века, имеющие в своем оснащении самые современные приборы, поправили это число всего лишь на 0,4 секунды. Но тогда еще не было известно, какова масса Луны и Земли.

Более современные исследования

Луна - самое изученное тело на небосклоне. Ученые разных стран для его исследования запустили около ста спутников. Первым в мире исследовательским аппаратом был запущен советский спутник «Луна-1». Это событие произошло в 1959 году. Тогда исследовательский комплекс смог опуститься на лунную поверхность, взять образцы грунта, передать на Землю фотоснимки, примерно вычислить, какая масса Луны. Помимо этого спутника, Советским Союзом на Лунную поверхность было доставлено также два лунохода. Один из них функционировал почти 10 месяцев, пройдя расстояние в 10 км, а второй - 4 месяца, пройдя 37 км.

Основные показатели Луны

Диаметр Луны - 3474 км. При этом диаметр Земли составляет 12742 км. Иными словами, окружность Луны представляет собой всего лишь 3/11 части от диаметра нашей планеты.

Площадь поверхности спутника Земли составляет 37,9 млн кв. км. В сравнении с показателями планеты, это тоже намного меньше, ведь площадь поверхности Земли составляет 510 млн кв. км. Даже если сравнить лунную поверхность только с земными материками, окажется, что площадь Луны в 4 раза меньше. Объем, который занимает Земля, в 50 раз превосходит лунный.

Немного подробнее о массе Луны

Масса Луны наиболее точным образом была определена с помощью искусственных спутников. Она составляет 7.35*10 22 килограмма. Для сравнения, масса Земли составляет 5.9742 × 10 24 килограмма.

Масса Луны и Земли постоянно немного меняется. Например, Земля подвержена небольшой метеоритной бомбардировке. За сутки на земную поверхность падает около 5-6 тонн метеоритов. Но при этом Земля теряет больше массы за счет испарения в космическое пространство гелия и водорода из атмосферы. Эти потери уже составляют порядка 200-300 тонн в сутки. У Луны, конечно, таких потерь нет. Средняя плотность вещества на Луне составляет порядка 3,34 г на 1 см 3 .

Такая величина, как ускорение силы тяжести, на спутнике Земли в 6 раз больше, чем на самой Земле. Плотность тех горных пород, из которых состоит Луна, приблизительно в 60 раз меньше, чем плотность земных. Поэтому масса Луны в 81 раз меньше, чем масса Земли.

Поскольку Луна имеет очень малое притяжение, вокруг нее практически отсутствует атмосфера - здесь нет газовой оболочки и воды в свободном состоянии. Период обращения Луны вокруг земли называется сидерическим, или звездным. Он составляет 27,32166 суток. Но это число подвержено незначительным изменениям с течением времени.

Лунные фазы

Луна не светится самостоятельно. Человек может видеть лишь те ее части, на которые попадают лучи Солнца, отражающиеся от поверхности Земли. Таким образом могут быть объяснены лунные фазы. Луна, двигаясь по своей орбите, проходит между Солнцем и Землей. В это время она обращена к Земле неосвещенной стороной. Этот период называют новолунием. Через 1-3 суток после этого в западной части небосклона можно увидеть небольшой узкий серп - это видимая часть Луны. Примерно через неделю наступает вторая четверть, когда оказывается освещенной ровно половина спутника Земли.

В 1609 году, после изобретения телескопа, человечество сумело впервые подробно рассмотреть свой космический спутник. С тех пор Луна - это наиболее изученное космическое тело, а также первое, на котором сумел побывать человек.

Первое, с чем предстоит разобраться - чем же является наш спутник? Ответ неожиданный: хотя Луна и считается спутником, технически она является такой же полноценной планетой, как и Земля. У нее большие размеры - 3476 километров в поперечнике на экваторе - и масса в 7,347×10 22 килограмм; Луна лишь немногим уступает , самой маленькой планете Солнечной Системы. Все это делает ее полноценным участником гравитационной системы Луна-Земля.

Известен и другой такой тандем в Солнечной системе, и Харон. Хотя вся масса нашего спутника составляет чуть больше сотой части массы Земли, Луна не обращается вокруг самой Земли - у них есть общий центр массы. А близость к нам спутника порождает еще один интересный эффект, приливный захват. Из-за него Луна всегда повернута к Земле одной и той же стороной.

Более того, изнутри Луна устроена как полноценная планета - у нее есть кора, мантия и даже ядро, а в далеком прошлом на ней существовали вулканы. Однако от древних ландшафтов уже ничего не осталось - на протяжении четырех с половиной миллиардов лет истории Луны на нее падали миллионы тонн метеоритов и астероидов, которые избороздили ее, оставив кратеры. Некоторые удары были настолько сильны, что прорвали ее кору вплоть до самой мантии. Котлованы от таких столкновений образовали лунные моря, темные пятна на Луне, которые легко различимы с . Более того, они присутствуют исключительно на видимой стороне. Почему? Об этом мы расскажем дальше.

Среди космических тел, Луна влияет на Землю сильнее всего - кроме, разве, Солнца. Лунные приливы, которые регулярно поднимают уровень воды в мировом океане - наиболее очевидное, но не самое сильное воздействие спутника. Так, постепенно отдаляясь от Земли, Луна замедляет вращение планеты - солнечный день вырос из первоначальных 5 до современных 24-х часов. А еще спутник служит естественным барьером против сотен метеоритов и астероидов, перехватывая их на подлете к Земле.

И вне сомнения, Луна - это лакомый объект для астрономов: как любителей, так и профессионалов. Хотя расстояние до Луны измерено с точностью до метра с помощью лазерных технологий, а образцы грунта с нее неоднократно привозили на Землю, там все еще остается место для открытий. Например, ученые охотятся за лунными аномалиями - таинственными вспышками и сияниями на поверхности Луны, не всем из которых находится объяснение. Оказывается, наш спутник скрывает гораздо больше, чем видно на поверхности - давайте же разберемся в тайнах Луны вместе!

Топографическая карта Луны

Характеристики Луны

Научному изучению Луны сегодня больше 2200 лет. Движение спутника на небосклоне Земли, фазы и расстояние от него до Земли были подробно описаны еще древними греками - а внутреннее строение Луны и ее история исследуются по сей день космическими аппаратами. Тем не менее века работы философов, а затем физиков и математиков дали весьма точные данные о том, как выглядит и движется наша Луна, и почему она именно такая. Все сведения о спутнике можно разделить на несколько категорий, взаимовытекающих друг из друга.

Орбитальные характеристики Луны

Как движется Луна вокруг Земли? Если бы наша планета была неподвижной, спутник вращался бы по почти идеальному кругу, время от времени незначительно приближаясь и отдаляясь от планеты. Но ведь и сама Земля вокруг Солнца - Луне приходится постоянно «догонять» планету. А еще наша Земля не является единственным телом, с которым наш спутник взаимодействует. Солнце, находящееся в 390 раз дальше Земли от Луны, массивнее Земли в 333 тысячи раз. И даже с учетом закона обратных квадратов, по которому интенсивность любого источника энергии резко падает при отдалении, Солнце притягивает Луну в 2,2 раза сильнее Земли!

Поэтому конечная траектория движения нашего спутника напоминает спираль, да еще и непростую. Ось лунной орбиты колеблется, сама Луна периодически приближается и отдаляется, а в глобальных масштабах и вовсе улетает от Земли. Эти же колебания приводят к тому, что видимая сторона Луны - это не одно и то же полушарие спутника, но разные его части, которые попеременно поворачиваются к Земле из-за «покачивания» спутника на орбите. Эти перемещения Луны по долготе и широте называются либрациями, и позволяют заглянуть за обратную сторону нашего спутника задолго до первого облета космическими аппаратами. С востока на запад Луна проворачивается на 7,5 градуса, а с севера на юг - на 6,5. Поэтому с Земли легко можно увидеть оба полюса Луны.

Конкретные орбитальные характеристики Луны полезны не только астрономам и космонавтам - к примеру, фотографами особенно ценится суперлуние: фаза Луны, в которой она достигает максимального размера. Это полнолуние, во время которого Луна находится в перигее. Приведем основные параметры нашего спутника:

  • Орбита Луны - эллиптическая, ее отклонение от идеального круга, составляет около 0,049. Учитывая колебания орбит, минимальное расстояние спутника до Земли (перигей) оставляет 362 тысячи километров, а максимальное (апогей) - 405 тысяч километров.
  • Общий центр массы Земли и Луны находится за 4,5 тысячи километров от центра Земли.
  • Сидерический месяц - полное прохождение Луны по своей орбите - проходит за 27,3 дня. Однако для полного оборота вокруг Земли и смены лунных фаз требуется на 2,2 дня больше - ведь за то время, что Луна идет по своей орбите, Земля пролетает тринадцатую часть собственной орбиты вокруг Солнца!
  • Луна находится в приливном захвате Земли - она вращается вокруг своей оси с той же скоростью, что и вокруг Земли. Из-за этого Луна постоянно повернута к Земле одной и той же стороной. Такое состояние характерно для спутников, которые находятся очень близко к планете.

  • Ночь и день на Луне очень долгие - по половине земного месяца.
  • В те периоды, когда Луна выходит из-за земного шара, ее видно на небе - тень нашей планеты постепенно сползает со спутника, позволяя освещать его Солнцу, а затем обратно закрывает его. Смены освещенности Луны, видимые с Земли, называются ее . Во время новолуния спутника не видно на небе, в фазе молодой Луны появляется ее тонкий серп, напоминающий завиток буквы «Р», в первой четверти Луна освещена ровно наполовину, а во время полнолуния ее заметно лучше всего. Дальнейшие фазы - вторая четверть и старая луна - происходят в обратном порядке.

Интересный факт: так как лунный месяц короче календарного, иногда за один месяц может быть два полнолуния - второе называется «голубой луной». Она такая же яркая, как и обычная полня - Землю она освещает на 0,25 люкс (для примера, обычное освещение внутри дома составляет 50 люкс). Сама Земля освещает Луну в 64 раза сильнее - целых 16 люкс. Разумеется, весь свет не собственный, а отраженный солнечный.

  • Орбита Луны наклонена к плоскости орбиты Земли и регулярно ее пересекает. Наклонение спутника постоянно меняется, варьируясь между 4,5° и 5,3°. На смену наклонения Луны уходит больше 18 лет.
  • Луна движется вокруг Земли со скоростью 1,02 км/с. Это намного меньше скорости движения Земли вокруг Солнца - 29,7 км/с. Максимальная скорость космического аппарата, достигнутая зондом для исследования Солнца «Гелиос-Б», составляла 66 километров в секунду.

Физические параметры Луны и ее состав

Для того чтобы понять, насколько большая Луна и из чего она состоит, людям понадобилось немало времени. Только в 1753 году ученый Р. Бошкович сумел доказать, что у Луны нет существенной атмосферы, равно как и жидких морей - при покрытии Луной звезды исчезают мгновенно, когда наличие дало бы возможность наблюдать их постепенное «затухание». Еще 200 лет понадобилось на то, чтобы советская станция «Луна-13» в 1966 году измерила механические свойства поверхности Луны. А про обратную сторону Луны вообще не было ничего не известно вплоть до 1959 года, пока аппарат «Луна-3» не сумел сделать первые ее снимки.

Команда космического корабля «Аполлон-11» доставила первые образцы на поверхность в 1969 году. Также они стали первыми людьми, которые побывали на Луне - до 1972 года на ней приземлилось 6 кораблей, и высадились 12 астронавтов. В достоверности этих полетов часто сомневались - однако многие пункты критиков исходили из их несведущести в космическом деле. Американский флаг, который по уверениям конспирологов «не мог развеваться в безвоздушном пространстве Луны», на самом деле твердый и статичный - его специально укрепили твердыми нитями. Это было сделано специально для того, чтобы сделать красивые снимки - провисшее полотно не столь зрелищное.

Многие искажения цветов и форм рельефа в отражениях на шлемах скафандров, в которых искали фальсификат, были обусловлены золотым напылением на стекле, защищающем от ультрафиолетового . Советские космонавты, которые смотрели трансляцию высадки астронавтов в реальном времени, также подтвердили достоверность происходящего. А кто сможет обмануть эксперта в своем деле?

А полные геологические и топографические карты нашего спутника составляются по сегодняшний день. В 2009 году космическая станция LRO (англ. «Lunar Reconnaissance Orbiter», Лунный Орбитальный Зонд) не только доставила самые детальные снимки Луны в истории, но и доказала наличие на ней большого количества замерзшей воды. Он же поставил точку в дискуссии о том, были ли люди на Луне, засняв следы деятельности команды «Аполлон» с низкой орбиты Луны. Аппарат был укомплектован оборудованием из нескольких стран мира, в том числе и из России.

Так как к исследованию Луны подключаются новые космические государства вроде Китая и частные компании, свежие данные поступают каждый день. Мы собрали основные параметры нашего спутника:

  • Площадь поверхности Луны занимает 37,9х10 6 квадратных километров - около 0,07% от всей площади Земли. Невероятно, но это лишь на 20% превышает площадь всех заселенных человеком местностей на нашей планете!
  • Средняя плотность Луны 3,4 г/см 3 . Она на 40% меньше плотности Земли - в первую очередь из-за того, что спутник лишен многих тяжелых элементов вроде железа, которыми богата наша планета. Кроме того, 2% массы Луны приходится на реголит - мелкую крошку камня, созданную космической эрозией и ударами метеоритов, плотность которой ниже обычной породы. Его толща в отдельных местах достигает десятков метров!
  • Все знают, что Луна намного меньше Земли, что сказывается на ее гравитации. Ускорение свободного падения на ней составляет 1,63 м/с 2 - всего 16,5 процентов от всей силы притяжения Земли. Прыжки астронавтов на Луне были очень высокими несмотря даже на то, что их скафандры весили 35,4 килограмма - почти как рыцарские доспехи! При этом они еще сдерживались: падение в условиях вакуума было достаточно опасным. Ниже - видео прыжков астронавта из прямой трансляции.

  • Лунные моря охватывают около 17% всей Луны - в основном ее видимую сторону, которая почти на треть покрыта ими. Они являются следами ударов особенно тяжелых метеоритов, которые буквально сорвали со спутника его кору. В этих местах от мантии Луны поверхность отделяет лишь тонкий, полукилометровый слой застывшей лавы - базальта. Поскольку ближе к центру любого большого космического тела концентрация твердых веществ растет, в лунных морях больше металла, чем где-либо по Луне.
  • Основная форма рельефа Луны - это кратеры и другие производные от ударов и ударными волнами, которастероидов. Лунные горы и цирки были построены громадными ые изменяли структуру поверхности Луны до неузнаваемости. Особенно сильна их роль была в начале истории Луны, когда та была еще жидкой - падения поднимали целые волны расплавленного камня. Это же стало причиной образования лунных морей: обращенная к Земле сторона была сильнее раскалена из-за концентрации в ней тяжелых веществ, из-за чего астероиды влияли на нее сильнее, чем на прохладную обратную сторону. Причиной такого неравномерного распределения вещества стало притяжение Земли, особенно сильное в начале истории Луны, когда та была ближе.

  • Кроме кратеров, гор и морей, в луне существуют пещеры и трещины - уцелевшие свидетели тех времен, когда недра Луны были также раскалены, как и , и на ней действовали вулканы. В этих пещерах часто присутствуют водные льды, как и у кратеров на полюсах, из-за чего их часто рассматривают как места для будущих лунных баз.
  • Настоящий цвет поверхности Луны - очень темный, ближе к черному. По всей же Луне попадаются самый разные цвета - от бирюзово-голубого до почти оранжевого. Светло-серый оттенок Луны из Земли и на снимках обусловлен высокой освещенностью Луны Солнцем. Из-за темного цвета, поверхность спутника отражает лишь 12% от всех лучей, падающих от нашего светила. Будь Луна светлее - и во время полнолуний было бы светло как днем.

Как сформировалась Луна?

Исследование минералов Луны и ее история - одна из самых тяжелых для ученых дисциплин. Поверхность Луны открыта для космических лучей, а тепло у поверхности нечему задерживать - поэтому спутник днем накаляется до 105° C, а ночью остывает до –150° C. Двухнедельная продолжительность дня и ночи усиливает влияние на поверхность - и в итоге минералы Луны изменяются до неузнаваемости со временем. Однако удалось кое-что выяснить.

Сегодня считается, что Луна - это продукт столкновения крупного зародыша планеты, Тейи, с Землей, который произошел миллиарды лет назад, когда наша планета была полностью расплавленной. Часть столкнувшейся с нами планеты (а она была размером с ) была поглощена - но ее ядро вместе с частью поверхностной материи Земли было выброшено по инерции на орбиту, где и осталалось в виде Луны.

Это доказывает уже упоминавшийся выше дефицит железа и других металлов на Луне - к тому времени, когда Тейя, вырвала кусок земного вещества, большая часть тяжелых элементов нашей планеты была притянута гравитацией внутрь, к ядру. Это столкновение отразилось на дальнейшем развитии Земли - она стала вращаться быстрее, а ось ее вращения наклонилась, из-за чего стала возможной смена сезонов.

Дальше Луна развивалась как обычная планета - у нее сформировалось железное ядро, мантия, кора, литосферные плиты и даже своя атмосфера. Однако малая масса и бедный на тяжелые элементы состав привел к тому, что недра нашего спутника быстро остыли, а атмосфера - испарилась от высокой температуры и отсутствия магнитного поля. Однако кое-какие процессы внутри все еще происходят - из-за движений в литосфере Луны иногда происходят лунотрясения. Они представляют одну из главных опасностей для будущих колонизаторов Луны: их размах доходит до 5 с половиной баллов по шкале Рихтера, а длятся они куда дольше земных - нет океана, способного вобрать в себя импульс движения земных недр.

Основные химические элементы на Луне - это кремний, алюминий, кальций и магний. Минералы, которые образуют эти элементы, схожие с земными и даже встречаются на нашей планете. Однако главное отличие минералов Луны - это отсутствие воздействия воды и кислорода, вырабатываемого живыми существами, высокая доля метеоритных примесей и следы воздействия космического излучения. Озоновый слой Земли сформировался достаточно давно, а атмосфера сжигает большую часть массы падающих метеоритов, позволяя воде и газам медленно, но уверенно менять облик нашей планеты.

Будущее Луны

Луна - это первое космическое тело после Марса, которое претендует на первоочередную колонизацию человеком. В некотором смысле Луна уже освоена - СССР и США оставили на спутнике государственные регалии, а орбитальные радиотелескопы прячутся за обратной стороной Луны от Земли, генератора множества помех в эфире. Однако что ждет наш спутник в будущем?

Главный процесс, о котором уже не раз упоминалось в статье - это отдаление Луны за счет приливного ускорения. Оно происходит достаточно медленно - спутник улетает не больше чем на 0,5 сантиметра в год. Однако важно тут совершенно другое. Дистанцируясь от Земли, Луна замедляет ее вращение. Рано или поздно может наступить момент, когда сутки на Земле будут длиться столько же, сколько лунный месяц - 29–30 дней.

Однако у удаления Луны будет свой предел. После его достижения, Луна начнет витками приближаться к Земле - причем куда быстрее, чем отдалялась. Полностью врезаться ей, однако, не удастся. За 12–20 тысяч километров от Земли начинается ее полость Роша - гравитационный предел, при котором спутник какой-либо планеты может сохранять твердую форму. Поэтому Луна на подлете будет разорвана на миллионы маленьких фрагментов. Часть из них упадет на Землю, устроив бомбардировку в тысячи раз мощнее ядерной, а остальные образуют вокруг планеты кольцо наподобие . Однако оно будет не таким ярким - кольца газовых гигантов состоят изо льда, который в разы ярче темных пород Луны - их не всегда будет видно на небе. Кольцо Земли создаст проблему астрономам будущего - если, конечно, к тому времени на планете кто-либо останется.

Колонизация Луны

Однако все это произойдет через миллиарды лет. А до тех пор человечество рассматривает Луну как первый потенциальный объект для космической колонизации. Однако что именно подразумевается под «освоением Луны»? Сейчас мы вместе просмотрим ближайшие перспективы.

Многие представляют колонизацию космоса подобно колонизации Земли времен Нового Века - поиск ценных ресурсов, их добыча, а затем доставка обратно домой. Однако это неприменимо к космосу - в ближайшие пару сотен лет доставка килограмма золота даже с ближайшего астероида будет обходиться дороже, чем его добыча из самых сложных и опасных для работы шахт. Также Луна вряд ли выступит «дачным сектором Земли» в ближайшем будущем - хотя там и есть большие месторождения ценных ресурсов, там будет тяжело выращивать еду.

Зато наш спутник вполне может стать базой для дальнейшего освоения космоса в перспективных направлениях - например, того же Марса. Главная проблема космонавтики на сегодняшний день - это ограничения по весу космических аппаратов. Для запуска приходится строить монструозные конструкции, которым нужны тонны топлива - ведь нужно преодолеть не только притяжение Земли, но и атмосферу! А если это межпланетный корабль, то нужно его еще и заправить. Это серьезно стесняет конструкторов, принуждая их предпочитать экономность функциональности.

Луна подходит для стартовой площадки космических кораблей куда лучше. Отсутствие атмосферы и низкая скорость для преодоления притяжения Луны - 2,38 км/c против 11,2 км/с Земли - делают запуски намного проще. А залежи полезных ископаемых спутника позволяют сэкономить на весе топлива - камне на шее космонавтики, который занимает значительную долю массы любого аппарата. Если развернуть производство ракетного топлива на Луне, можно будет запускать большие и сложные космические корабли, собранные с деталей, доставленных с Земли. Да и сборка на Луне будет куда проще, чем на околоземной орбите - и намного надежнее.

Существующие на сегодняшний день технологии позволяют если не полностью, то частично осуществить этот проект. Однако любые шаги в эту сторону требуют риска. Вложение громадных денег потребуют исследования на предмет нужных ископаемых, а также разработка, доставка и тестирование модулей будущих лунных баз. А одна предполагаемая стоимость запуска даже первоначальных элементов способна разорить целую сверхдержаву!

Поэтому колонизация Луны - это предмет не столько работы ученых и инженеров, сколько людей всего мира для достижения столь ценного единства. Ибо в единстве человечества кроется истинная сила Земли.

Как ни странно, вес далекого Солнца оказывается несравненно проще определить, чем вес гораздо более близкой к нам Луны. (Само собой разумеется, что слово «вес» по отношению к этим светилам мы употребляем в том же условном смысле, как и для Земли: речь идет об определении массы.)

Масса Солнца найдена путем следующего рассуждения. Опыт показал, что 1 г притягивает 1 г на расстоянии I см с силой, равной 1/15 000 000 мг. Взаимное притяжение f двух тел с массами М и т на расстоянии D выразится согласно закону всемирного тяготения так:

Если М – масса Солнца (в граммах), т – масса Земли, D – расстояние между ними, равное 150 000 000 км, то взаимное их притяжение в миллиграммах равно (1/15 000 000)х(15 000 000 000 000 2)мг С другой стороны, эта сила притяжения есть та центростремительная сила, которая удерживает нашу планету на ее орбите и которая по правилам механики равна (тоже в миллиграммах) mV 2 /D, где т – масса Земли (в граммах), V – ее круговая скорость, равная 30 км/с = 3 000 000 см/с, a D – расстояние от Земли до Солнца. Следовательно,



Из этого уравнения определяется неизвестное М (выраженное, как сказано, в граммах):

М=2х10 33 г = 2х10 27 т.

Разделив эту массу на массу земного шара, т. е. вычислив



получаем 1/3 миллиона.

Другой способ определения массы Солнца основан на использовании третьего закона Кеплера. Из закона всемирного тяготения третий закон выводится в следующей форме:





– масса Солнца, Т – звездный период обращения планеты, а – среднее расстояние планеты от Солнца им– масса планеты. Применяя этот закон к Земле и Луне, получим



Подставляя известные из наблюдений



и пренебрегая в первом приближении в числителе массой Земли, малой по сравнению с массой Солнца, а в знаменателе массой Луны, малой по сравнению с массой Земли, получим



Зная массу Земли, получим массу Солнца.

Итак, Солнце тяжелее Земли в треть миллиона раз. Нетрудно вычислить и среднюю плотность солнечного шара: для этого нужно лишь его массу разделить на объем. Оказывается, что плотность Солнца примерно в четыре раза меньше плотности Земли.

Что же касается массы Луны, то, как выразился один астроном, «хотя она к нам ближе всех других небесных тел, взвесить ее труднее, чем Нептун, самую далекую (тогда) планету». У Луны нет спутника, который помог бы вычислить ее массу, как вычислили мы сейчас массу Солнца. Ученым пришлось прибегнуть к другим, более сложным методам, из которых упомянем только один. Он состоит в том, что сравнивают высоту прилива, производимого Солнцем, и прилива, порождаемого Луной.

Высота прилива зависит от массы и расстояния порождающего его тела, а так как масса и расстояние Солнца известны, расстояние Луны – тоже, то из сравнения высоты приливов и определяется масса Луны. Мы еще вернемся к этому расчету, когда будем говорить о приливах. Здесь сообщим лишь окончательный результат: масса Луны составляет 1/81 массы Земли (рис. 89).

Зная диаметр Луны, вычислим ее объем; он оказывается в 49 раз меньшим объема Земли. Поэтому средняя плотность нашего спутника составляет 49/81 =0,6 плотности Земли.

История оценки массы Луны насчитывает уже сотни лет. Ретроспектива этого процесса изложена в статье зарубежного автора Дэвида У. Хьюза. Перевод этой статьи сделан по мере скромных моих познаний в английском и представлен ниже. Ньютон оценил массу Луны значением вдвое большим принятого ныне за правдоподобное. Правда у каждого своя, а истина одна. Точку в этом вопросе могли бы поставить американцы с маятником на поверхности Луны. Они ведь там были;) . То же могли сделать телеметристы по орбитальным характеристикам LRO и прочих ИСЛ. Жаль, что эта информация пока недоступна.

Обсерватория

Измерение массы Луны

Обзор к 125-летию Обсерватории

Дэвид У. Хьюз

Кафедра физики и астрономии, Университет Шеффилда

Первая оценка лунной массы была сделана Исааком Ньютоном. Значение этой величины (массы), а также плотность Луны, с тех пор были предметом обсуждения.

Введение

Масса является одной из наиболее неудобных для измерения величин в астрономическом контексте. Обычно мы измеряем силу воздействия неизвестной массы на известную массу, или наоборот. В истории астрономии не было концепции "масс", скажем, Луны, Земли, и Солнца (M M , М E , М C) до времени Исаака Ньютона (1642 - 1727). После Ньютона, утвердились достаточно точные соотношения масс. Так, например, в первом издании Начал (1687) дано отношение М C /М Е =28700, которое затем увеличивается до М C /М Е =227512 и М C /М Е =169282 во втором (1713) и третьем (1726) изданиях, соответственно, в связи с уточнением астрономической единицы. Эти отношения подчеркнули тот факт, что Солнце было важнее, чем Земля, и оказали значительную поддержку гелиоцентрической гипотезе Коперника .

Данные по плотности (масса/объем) тела помогает оценить его химический состав. Греки более 2200 лет назад получили достаточно точные значения для размеров и объемов Земли и Луны, но массы была неизвестны, а плотности не могли быть рассчитаны. Таким образом, даже при том, что Луна была похожа на сферу из камня, это не могло быть научно подтверждено. Кроме того, не могли быть предприняты первые научные шаги к выяснению происхождения Луны.

Безусловно, лучший метод определения массы планеты сегодня, в космическую эру, опирается на третий (гармонический) закон Кеплера . Если спутник массой m , вращается вокруг Луны массой М M , то

где а это усредненное по времени среднее расстояние между M M и m , G постоянная тяготения Ньютона, и P - период орбиты. Поскольку М M >>m , это уравнение дает значение M M непосредственно.

Если астронавт может измерять ускорение силы тяжести, G M на поверхности Луны, то

где R M - лунный радиус, параметр, который измерял с разумной точностью еще Аристарх Самосский , около 2290 лет назад.

Исаак Ньютон 1 не измерял массу Луны непосредственно, но попытался оценить соотношение между солнечной и лунной массой с использованием измерения морских приливов. Даже при том, что многие люди до Ньютона предполагали, что приливы были связаны с положением и влиянием Луны, Ньютон был первым, кто взглянул на предмет с точки зрения гравитации. Он понял, что приливная сила, создаваемая телом массы М на расстоянии d пропорциональна M/ d 3 . Если это тело имеет диаметр D и плотность ρ , эта сила пропорциональна ρ D 3 / d 3 . И если угловой размер тела, α , мал, приливное сила пропорциональна ρα 3 . Так приливообразующая сила Солнца чуть меньше половины лунной.

Осложнения возникли потому, что наибольший прилив был отмечен, когда Солнце было на самом деле в 18.5° от сизигии, а также потому, что лунная орбита не лежит в плоскости эклиптики и имеет эксцентриситет. Принимая все это во внимание, Ньютон на основе своих наблюдений, что “До устья реки Эйвон, в трех милях ниже Бристоля, высота подъема воды в весенних и осенних сизигиях светил (по наблюдениям Samuel Sturmy) составляет около 45 футов, но в квадратурах только 25”, сделал вывод, “что плотность вещества Луны к плотности вещества Земли относится как 4891 к 4000, или как 11 к 9. Следовательно вещество Луны более плотное и более земляное, чем сама Земля”, и “масса вещества Луны будет в массе вещества Земли как 1 в 39.788” (Начала, Книга 3, Предложение 37, Проблема 18).

Поскольку нынешнее значение для соотношения между массой Земли и массы Луны задается как М Е /M M = 81.300588, ясно, что у Ньютона что-то пошло не так. К тому же значение 3.0 несколько более реалистично, чем 9/5 для отношения высот сизигийного? и квадратурного прилива. Также неточное значение Ньютона для массы Солнца было серьезной проблемой. Обратите внимание, что Ньютон имел очень мало статистической точности, и указание им пяти значащих цифр в значении M E /M M является полностью необоснованным.

Пьер-Симон Лаплас (1749 - 1827) посвятил значительное время для анализа высот приливов (особенно в Бресте), концентрируясь на приливах на четырех основных фазах Луны на обоих солнцестояниях и равноденствиях. Лаплас 2 , используя короткие серии наблюдений 18-го века, получил M E /M M значение 59. К 1797 году он уточнил это значение до 58.7. Используя расширенный набор приливных данных в 1825 году, Лаплас 3 получил M E /M M = 75.

Лаплас понял, что приливный подход был одним из многих способов выяснения лунной массы. Тот факт, что вращение Земли осложняет приливные модели, и что конечный продукт расчета был отношение масс Луна / Солнце, явно беспокоило его. Поэтому он сравнил свою приливную силу с результатами измерений, полученными другими методами. Лаплас 4 записывает в дальнейшем коэффициенты М Е /M M , как 69.2 (с использованием коэффициентов Даламбера), 71.0 (с использованием анализа Маскелина нутации Брэдли и наблюдений параллакса), и 74.2 (с использованием работы Бурга о лунном параллактическом неравенстве). Лаплас, по-видимому, рассматривал каждый результат в равной степени достойным доверия и просто осреднял четыре значения для получения среднего. “La valeur le plus vraisembable de la masse de la lune, qui me parait resulted des divers phenomenes 1/68.5” (ref 4, с. 160). Среднее соотношение М Е /M M равное 68.5 неоднократно встречается у Лапласа 5 .

Вполне понятно, что к началу девятнадцатого века, должны были возникнуть сомнения относительно ньютоновского значения 39.788, особенно в умах некоторых британских астрономов, которые были в курсе работ своих французских коллег.

Финлейсон 6 вернулся к приливной методике и при использовании измерения сизигийного? и квадратурного приливов в Дувре за годы 1861, 1864, 1865, и 1866, он получил следующие значения М Е /M M: 89.870, 88.243, 87.943, и 86.000, соответственно. Феррелом 7 извлечены главные гармоники из девятнадцатилетних приливных данных в Бресте (1812 - 1830) и получено значительно меньшее соотношение М Е / М M = 78. Харкнесс 8 приводит приливное значение М Е /M М = 78.65.

Так называемый маятниковый метод основан на измерении ускорения от силы тяжести. Возвращаясь к третьему закону Кеплера, с учетом второго закона Ньютона получим

где a М - усредненное по времени расстояние между Землей и Луной, P M - лунный сидерический период обращения (т.е. длина звездного месяца), g Е ускорение силы тяжести на поверхности Земли, и R Е - радиус Земли. Так

Согласно Барлоу и Брайан 9 , эта формула была использована Эйри 10 для измерения М Е /M М, но была неточна в силу малости этой величины и аккумулировала - накопившуюся неопределенность в значениях величин a М , g Е , R Е, и P M .

Когда телескопы стали более совершенными и точность астрономических наблюдений повысилась, стало возможным решить лунное уравнение более точно. Общий центр масс системы Земля /Луна движется вокруг Солнца по эллиптической орбите. И Земля, и Луна вращаются вокруг этого центра масс каждый месяц.

Наблюдатели на Земле, таким образом, видят на протяжении каждого месяца, небольшое смещение на восток и затем небольшое смещение на запад небесной позиции объекта, по сравнению с координатами объекта, которые он имел бы в отсутствии у Земли массивного спутника. Даже с современными инструментами это движение не обнаруживается в случае звезд. Оно может, однако, быть легко измерено для Солнца, Марса, Венеры и астероидов, которые проходят неподалеку, (Эрос, например, в его ближайшей точке находится всего в 60 раз дальше, чем Луна). Амплитуда месячного смещения позиции Солнца составляет около 6,3 секунды дуги. Таким образом

где a C - среднее расстояние между Землей и центром масс системы Земля-Луна (это около 4634 км), и a S - среднее расстояние между Землей и Солнцем. Если среднее расстояние Земля-Луна a M также известно, то

К сожалению, постоянная этого “лунного уравнения”, т.е. 6,3", это очень маленький угол, который крайне трудно точно измерить. К тому же М Е /М M зависит от точного знания расстояния Земля-Солнце.

Значение лунного уравнения может быть в несколько раз больше для астероида, который проходит близко с Землей. Гилл 11 использовал 1888 и 1889 позиционных наблюдения астероида 12 Виктория и солнечного параллакса на 8.802" ± 0.005" и пришел к выводу, что М Е /М M =81.702±0.094. Хинкс 12 использовал длинную последовательность наблюдений астероида 433 Эрос и пришел к выводу, что М Е /М M =81.53±0.047. Затем он использовал обновленное значение солнечного параллакса и исправленные значения для астероида 12 Виктория, сделанные Дэвидом Гиллом и получил исправленное значение М Е /М M =81.76±0.12.

Используя этот подход, Ньюкомб 13 , из наблюдений Солнца и планет, получил М Е /М M =81.48±0.20.

Спенсер Джон с 14 проанализировал наблюдения за астероидом 433 Эрос, когда он проходил в 26 х 10 6 км от Земли в 1931 году. Главной задачей было измерение солнечного параллакса, и комиссия Международного астрономического союза была создана в 1928 году с этой целью. Спенсер Джонс обнаружил, что постоянная лунного уравнения равна 6.4390± 0.0015секунды дуги. Это, в сочетании с новым значением для солнечного параллакса, привело к отношению М Е /М M =81.271±0.021.

Прецессия и нутация также могут быть использованы. Полюс оси вращения Земли прецессирует вокруг полюса эклиптики каждые 26 000 лет или около того, что также проявляется в движения первой точки Овна вдоль эклиптики примерно на 50.2619" в год. . Прецессия была обнаружена Гиппархом более 2000 лет назад. На это движение накладывается более быстрое, небольшое периодическое движение, известное как нутация, обнаруженная Джеймсом Брэдли (1693 ~ 1762) в 1748 году. Нутация в основном происходит, потому что плоскость лунной орбиты не совпадает с плоскостью эклиптики. Максимальная нутация составляет около 9.23" и полный цикл занимает около 18.6 лет. Существует также дополнительные нутации производимые Солнцем. Все эти эффекты обусловлены моментами сил, действующими на экваториальные вздутия Земли.

Величина установившейся лунно-солнечной прецессии по долготе, и амплитуды различных периодических нутаций по долготе, являются функциями, среди прочего, массы Луны. Стоун 15 отметил, что лунно-солнечная прецессия, L, и постоянная нутации, N, даны так:

где ε=(М M /М S) (a S /a M) 3 , a S и a M среднее расстояние Земля-Солнце и Земля-Луна;

e E и e M - эксцентриситеты земной и лунной орбиты, соответственно. Постоянная Делоне представлена как γ. В первом приближении γ есть синус половины угла наклона лунной орбиты к эклиптике. Величина ν это смещение узла лунной орбиты,

в течение Юлианского года, по отношению к линии равноденствий; χ является постоянной, которая зависит от средней возмущающей силы Солнца, момента инерции Земли, и угловой скорости Земли по своей орбите. Обратите внимание, что χ сокращается, если L делится на Н. Стоун подставляя L = 50.378" и N = 9.223" получил М Е /М M = 81.36. Ньюкомб использовал свои собственные измерения L и N и нашел М Е /М M = 81.62 ± 0.20. Проктор 16 нашел, что М Е /М M = 80.75.

Движение Луны вокруг Земли было бы точно по эллипсу, если бы Луна и Земля были единственными телами в Солнечной системе. Тот факт, что они таковыми не являются приводит к лунному параллактическому неравенству. В связи с привлечением других тел в Солнечной системе, и Солнца, в частности, орбита Луны чрезвычайно сложна . Три крупнейших неравенства, которые должны быть применены обусловлены эвекцией, вариацией, и годовым уравнением. В контексте настоящей работы вариация является наиболее важным неравенством. (Исторически Седиллот говорит, что лунная вариация была обнаружена Абул-Вафа в 9-м веке; другие приписывают это открытие Тихо Браге).

Лунная вариация вызвана изменением, которое происходит от различия солнечного притяжения в системе Земля-Луна на протяжении синодического месяца. Этот эффект равнен нулю, когда расстояния от Земли до Солнца и Луны до Солнца равны, в ситуации, возникающей очень близко к первой и последней четверти. Между первой четверти (через полнолуние) и последней четвертью, когда Земля находится ближе к Солнцу, чем Луна, и Земля преимущественно оттягивается от Луны. Между последней четвертью (через новолуние) и первой четвертью, Луна находится ближе к Солнцу, чем Земля, и поэтому Луна преимущественно оттягивается от Земли. Полученная остаточная сила может быть разложена на две составляющие, одна касательная к лунной орбите, а другая перпендикулярная к орбите (т.е., в направлении Луна-Земля).

Положение Луны меняется на целых ± 124.97 угловые секунды (согласно Брауэр и Клементс 17) по отношению к позиции, которую она имела бы, если бы Солнце было бесконечно далеко. Именно эти 124.9", известны как параллактическое неравенство.

Поскольку эти 124.97 угловые секунды соответствуют четырем минутам времени, то следует ожидать, что эта величина может быть измерена с достаточной точностью. Наиболее очевидное следствие параллактического неравенства в том, что интервал между новолунием и первой четвертью составляет около восьми минут, т.е. дольше, чем от этой же фазы до полнолуния. К сожалению, точность, с которой эта величина может быть измерена несколько уменьшилась по причине, что лунная поверхность неровная и что различные лунные края должны быть использованы для измерения лунной позиции в различных частях орбиты. (Вдобавок к этому есть также небольшое периодическое изменение в видимом полудиаметре Луны в связи с меняющимся контрастом между яркостью края Луны и неба. Это вносит погрешность, которая изменяется между ± 0.2" и 2", см. Кэмпбелл и Нейсон 18).

Рой 19 отмечает, что лунное параллактическое неравенство, P, определяется как

По словам Кэмпбелла и Нейсона 18, параллактическое неравенство было установлено как 123.5" в 1812 году, 122.37" в 1854 году, 126.46" в 1854 году, 124.70" в 1859 году, 125.36" в 1867 году, и 125.46" в 1868 году. Таким образом, отношение массы Земли / Луна может быть рассчитано по наблюдениям параллактическим неравенства, если других величин, и особенно солнечного параллакса (т.е. a S ), известны. Это привело к дихотомии среди астрономов. Некоторые предполагают, используя массовое соотношение Земля/Луна из параллактического неравенства, оценить среднее расстояние Земля-Солнце. Другие предполагают через последнее оценить первое (см Moulton 20).

Наконец рассмотрим возмущение планетных орбит. Орбиты наших ближайших соседей, Марса и Венеры, которые испытывают гравитационное влияние системы Земля-Луна. В связи с этим действием, орбитальные параметры, такие как эксцентриситет, долгота узла, наклонение, и аргумент перигелия изменяются как функция времени. Точное измерение этих изменений может быть использовано для оценки общей массы системы Земля / Луна, и вычитанием, массы Луны.

Это предложение было впервые сделано Леверье (см. Янг 21). Он подчеркнул тот факт, что движения узлов и перигелиев, хотя и медленные, но непрерывные, и, таким образом, будут известны со все большей точностью с течением времени. Леверье загорелся этой идеей так, что отказался от наблюдений тогдашнего транзита Венеры, будучи убежден, что солнечный параллакс и отношение масс Солнце/Земля в конечном итоге будет найдено гораздо точнее методом возмущений.

Самая ранняя точка происходит от Начала Ньютона.

Точность известной лунной массы.

Методы измерения можно разделить на две категории. Приливная техника требуется особое оборудование. Вертикальный шест с градуировкой теряется в прибрежной грязи. К сожалению, сложность приливной обстановки вокруг берегов и заливов Европы означала, что полученные значения лунного массы были далеки от точной. Приливная сила, с которой тела взаимодействуют пропорциональна их массе, деленной на куб расстояния. Так следует помнить, что конечный продукт расчета на самом деле соотношение между лунной и солнечной массой. И соотношение между расстояниями до Луны и Солнца должно быть точно известно. Типичные приливные значения М Е /M М равны 40 (в 1687 году), 59 (в 1790 году), 75 (в 1825 году), 88 (в 1865 году), и 78 (в 1874 году), подчеркивают трудность, присущую интерпретации данных.

Все остальные методы опирались на точные телескопические наблюдений астрономических позиций. Детальные наблюдения звезд в течение длительных периодов времени привели к получению констант прецессии и нутации оси вращения Земли. Они могут быть интерпретированы в терминах соотношения между лунными и солнечными массами. Точные позиционные наблюдения Солнца, планет и некоторых астероидов, за несколько месяцев, привели к оценке расстоянии Земли от центра масс системы Земля-Луна. Тщательные наблюдения положения Луны в зависимости от времени в течение месяца привели к амплитуде параллактического неравенства. Последние два метода, вместе, опираясь на измерения радиуса Земли, длины звездного месяца, и ускорения силы тяжести на поверхности Земли, привели к оценке величины , а не массы Луны непосредственно. Очевидно, что если известно лишь с точностью до ± 1%, масса Луны является неопределенной. Чтобы получить соотношение М М /М E точностью скажем, 1, 0,1, 0,01% требуется величину измерить с точностью ± 0.012, 0.0012, и 0.00012 %, соответственно.

Оглядываясь на исторический период с 1680 до 2000, можно видеть, что лунная масса была известна ± 50% между 1687 и 1755, ± 10% между 1755 и 1830, ± 3% между 1830 и 1900, ± 0.15 % между 1900 и 1968, и ± 0.0001% между 1968 и по настоящее время. Между 1900 и 1968 два значения были распространены в серьезной литературе. Лунный теория указала, что M E /M M = 81.53, и лунное уравнение и лунной параллактическое неравенство дало несколько меньшую величину M E /M M = 81.45 (см. Гарнетт и Вулли 22). Другие значения цитировались исследователями, которые использовали иные значения солнечного параллакса в соответствующих уравнениях. Эта незначительная путаница была удалена когда легкий орбитальный аппарат и командный модуль летали по хорошо известным и точно-измеренным орбитам вокруг Луны в эпоху Apollo. Нынешний значение M E /M M = 81.300588 (см. Зейдельман 23), является одной из наиболее точно известных астрономических величин. Наше точное знание фактической лунной массы омрачено неопределенностью в постоянной тяготения Ньютона, G.

Важность лунной массы в астрономической теории

Исаак Ньютон 1 сделал очень мало с его новообретенным лунным знанием. Даже при том, что он был первым ученым, измерившим лунную массу, его М Е /М M = 39.788, казалось бы, заслужили немного современных комментариев. Тот факт, что ответ был слишком мал, почти в два раза, не был реализован в течение более шестидесяти лет. Физически значим только вывод, который Ньютон извлек из ρ M /ρ E =11/9, состоящий в том, что "тело Луны плотнее и более земное, чем у нашей земли" (Начала, книга 3, предложение 17, следствие 3).

К счастью, этот увлекательный, хотя ошибочный, вывод не приведет добросовестных космогонистов в тупик в попытке объяснить его значение. Примерно в 1830 году стало ясно, что ρ M /ρ E было 0.6 и М Е /М M было между 80 и 90. Грант 24 отметил, что "это точка, в которой большая точность не взывала к существующим основам науки", намекая, что точность здесь неважна просто потому, что ни астрономическая теория, ни теория происхождения Луны, не полагались сильно на эти данные. Агнес Клерк 25 был более осторожен, отметив, что "лунно-земная система... была особым исключением среди тел находящихся под влиянием Солнца."

Луна (масса 7,35-10 25 г) является пятым в Солнечной системе спутником из десятки (начиная с номера один, это Ганимед, Титан, Каллисто, Ио, Луна, Europa, Кольца Сатурна, Тритон, Титания, и Рея). Актуальный в 16ом и 17ом веках Парадокс Коперника (тот факт, что Луна вращается вокруг Земли, тогда как Меркурий, Венера, Земля, Марс, Юпитер и Сатурн вращается вокруг Солнца) давно забыт. Большой космогонический и селенологический интерес представляло отношение масс “главный / наиболее массивный-вторичный”. Вот список Плутон / Харон, Земля / Луна, Сатурн / Титан, Нептун / Тритон, Юпитер / Каллисто и Уран / Титания, коэффициенты, такие 8.3, 81.3, 4240, 4760, 12800 и 24600, соответственно. Это первое, что указывает на возможное совместное их происхождения по бифуркации путем конденсации жидкости тела (см, например, Дарвин 26, Джинс 27, и Биндер 28). На самом деле, необычное отношение масс Земля / Луна привело Вуд 29 к выводу, что "указывает достаточно четко, что событие или процесс, который создал земную Луну был необычным, и предполагает, что некоторое ослабление нормального отвращение к привлечению специальных обстоятельств, может быть допустимо в этой проблеме".

Селенология, изучение происхождения Луны, стала «научной» с открытия в 1610 году - Галилеем спутников Юпитера. Луна потеряла свой ​​уникальный статус. Тогда Эдмонд Галлей 30 обнаружил, что лунный орбитальный период меняется со временем. Это было не так, однако, до работы Г.Х. Дарвина в конце 1870-х, когда стало ясно, что первоначально Земля и Луна были гораздо ближе друг к другу. Дарвин предположил, что резонансно-индуцированная бифуркация вначале, быстрое вращение и конденсация расплавленной Земли привели к образованию Луны (см Дарвин 26). Осмонд Фишер 31 и В.Х. Пикеринг 32 даже зашел так далеко, что предположил, что бассейн Тихого океана это шрам, который остался, когда Луна откололась от Земли.

Вторым крупным селенологическим фактом было отношение масс Земля/Луна. То, что имелось нарушение значений для дарвиновских тезисов было отмечено А.М. Ляпуновым и Ф.Р. Мултоном (см., например, Moulton 33). . Вместе с низким комбинированным угловым моментом системы Земля-Луна, это привело к медленной гибели дарвиновской теории приливов. Затем было предложено, что Луна была просто сформирована в другом месте в Солнечной системе, а затем захвачена в некий сложный процесс трех тел (см., например. Си 34).

Третьим основным фактом была лунная плотность. Ньютоново значение ρ M /ρ E 1.223 стал 0.61 к 1800г., 0.57 к 1850г., и 0.56 к 1880 (см. Браш 35). На заре девятнадцатого века стало ясно, что Луна имеет плотность, которая была около 3.4 г см -3. В конце ХХ века это значение почти не изменилось, и составило 3.3437±0.0016г см -3 (см. Хаббард 36). Очевидно, что лунный состав отличался от состава Земли. Эта плотность сходна с плотностью пород на небольшой глубине в мантии Земли и предполагает, что дарвиновская бифуркация произошла в гетерогенной, а не в однородной Земле, в то время, которое наступило после дифференцировки и основного формообразования. Недавно это сходство было одним из основных фактов, способствующих популярности таранной гипотезы лунного образования.

Было отмечено, что средняя плотность Луны была такой же, как у метеоритов (и, возможно астероидов). Гуллемин 37 указал плотность Луны в 3.55 раза больше, чем у воды. Он отметил, что “так любопытно было узнать значения 3.57 и 3.54 плотности для некоторых метеоритов, собранных после того, как они попадают на поверхность Земли". Нэсмит и Карпентер 38 отметили, что "удельный вес лунного вещества (3.4) мы можем заметить, это примерно то же самое, что у кремния стекла или алмаза: и как ни странно это почти совпадает с метеоритами, что время от времени мы находим лежащими на земле; следовательно подтверждается теория, что эти тела были изначально фрагментами лунного вещества, и, вероятно, выбрасывались некогда из лунных вулканов с такой силой, что попадали в сферу земного притяжения, и в конечном счете, падали на земную поверхность ".

Юри 39, 40 использовал этот факт, чтобы поддержать свою теорию захвата лунного происхождения, хотя он беспокоился о разнице между лунной плотностью и плотностью определенных хондритовых метеоритов, и других планет земной группы. Эпик 41 счел эти различия несущественными.

Выводы

Масса Луны чрезвычайно нехарактерна. Она слишком велика, чтобы разместить наш спутник комфортно среди групп планетарных захваченных астероидов, как Фобос и Деймос вокруг Марса, групп Гималия и Ананке вокруг Юпитера, и групп Япет и Фиби вокруг Сатурна. Тот факт, что эта масса 1.23% Земли, к сожалению, только незначительная подсказка среди многих в поддержку предлагаемого механизма воздействия-происхождения. К сожалению, сегодняшняя популярная теория типа “тело размером с Марс попадает в недавно дифференцированную Землю и выбивает массу материала" имеет некоторые мелочные проблемы. Даже при том, что этот процесс был признан возможным, это не гарантирует, что он является вероятным. Такие вопросы, как “почему только одна Луна сформировалась в то время?”, "почему другие Луны не образуются в другое время?”, “почему этот механизм сработал на планете Земля, и не коснулся наших соседей Венеры, Марса, и Меркурия?” приходят на ум.

Масса Луны слишком мала, чтобы поместить ее в тот же разряд, что Харон Плутона. 8.3/1 Соотношение между массами Плутона и Харона, коэффициент, который указывает, что пара этих тел образована бифуркацией конденсации, вращением почти жидкого тела, и отстоит очень далеко от значения 81.3/1 отношения массы Земли и Луны.

Мы знаем лунную массу с точностью до одной части от 10 9 . Но не можем избавиться от ощущения, что общий ответ на эту точностью “и что”. В качестве ориентира, или подсказки о происхождении нашего небесного напарника этого знания мало. На самом деле, в одном из последних 555-страничных томов на эту тему 42 , индекс даже не включает “лунную массу” в виде записи!

References

(1) I. Newton, Principia, 1687. Here we are using Sir Isaac Newton"s Mathematical Principles of Natural Philosophy, translated into English by Andrew Motte in 1729; the translation revised and supplied with an historical and explanatory appendix by Florian Cajori, Volume 2: The System of the World (University of California Press, Berkeley and Los Angeles}, 1962.

(2) P.-S. Laplace, Mem. Acad, des Sciences, 45, 1790.

(3) P.-S. Laplace, Tome 5, Livre 13 (Bachelier, Paris), 1825.

(4) P.-S. Laplace, Traite de Mechanique Celeste, Tome 3 (rimprimerie de Crapelet, Paris), 1802, p, 156.

(5) P.-S. Laplace, Traite de Mechanique Celeste, Tome 4 (Courcicr, Paris), 1805, p. 346.

(6) H. P. Finlayson, MNRAS, 27, 271, 1867.

(7) W. E, Fcrrel, Tidal Researches. Appendix to Coast Survey Report for 1873 (Washington, D. C) 1874.

(8) W. Harkness, Washington Observatory Observations, 1885? Appendix 5, 1891,

(9) C. W. C. Barlow Sc G. H, Bryan, Elementary Mathematical Astronomy (University Tutorial Press, London) 1914, p. 357.

(10) G. B. Airy, Mem. RAS., 17, 21, 1849.

(11) D. Gill, Annals of the Cape Observatory, 6, 12, 1897.

(12) A. R. Hinks, MNRAS, 70, 63, 1909.

(13) S. Ncwcomb, Supplement to the American Ephemeris for tSy? (Washington, D. C), 1895, p. 189.

(14) H. Spencer Jones, MNRAS, 10], 356, 1941.

(15) E. J. Stone, MNRAS, 27, 241, 1867.

(16) R. A. Proctor, Old and Nets Astronomy (Longmans, Green, and Co., London), }