Воздушные линии электропередачи. Большая энциклопедия нефти и газа

Транспозиция фаз осуществляется обычно на опоре, редко в пролете. В качестве транспозиционной опоры используют, как правило, унифицированную анкерно-угловую опору,иногда промежуточную. [ ]

Транспозиция фаз линий электропередачи выполняется для снижения несимметрии напряжений и токов в электрической системе при нормальных режимах работы электропередачи и для ограничения мешающих влияний линий электропередачи на низкочастотные каналы связи.

Транспозиция фаз линий электропередачи выполняется для снижения несимметрии напряжений и токов в электрической системе при нормальных режимах работы электропередачи и для ограничения мешающих влияний линий электропередачи на низкочастотные каналы связи. Транспозиция фаз предусматривается для В Л НО кв и выше длиной более 100 км. Длины циклов транспозиции выбираются в соответствии с конкретными условиями, но не более 300 км. На участках между ближайшими подстанциями целесообразно выполнять целое число циклов транспозиции, чтобы снизить по возможности несимметрию токов и напряжений на каждой из подстанций электрической системы. На (ВЛ с заходами на промежуточные подстанции при длине участков между подстанциями не более 100 км транспозиция проводов выполняется путем скрутки фаз у подстанций, в концевом пролете, на одной из опор В Л на подходе к подстанции. В сетях с компенсированной нейтралью (35 кв и ниже) рекомендуется выравнивание несимметрии емкостных токов выполнять путем изменения расположения фаз на опорах, отходящих от подстанции ВЛ. При наличии на участке линии двух параллельных цепей целесообразно выполнять на каждой из них транспозицию по одинаковой схеме и с одинаковым числом полных циклов. Взаимная транспозиция цепей усложняет эксплуатацию и обычно не требуется.

Чтобы избежать этого, прибегают к транспозиции фаз. [ ]

Аналогичное решение применяют на линейных опорах для транспозиции фаз проводов воздушных линий. Одностоечные порталы позволяют сократить затраты материалов на несущие конструкции. [ ]

При длине КЛ несколько километров необходимо производить транспозицию фаз одножильных кабелей для уменьшения наведенного напряжения в параллельных линиях связи. [ ]

При длине кабельной линии в несколько километров производится транспозиция фаз одножильных кабелей для уменьшения наведенного напряжения в параллельных линиях связи. [ ]

]

В электрических сетях до 35 кВ рекомендуется производить транспозицию фаз на подстанциях так, чтобы суммарные длины участков с различным чередованием фаз были примерно равны. [ ]

При длине кабельной линии несколько километров необходимо производить транспозицию фаз одножильных кабелей для уменьшения наведенного напряжения в параллельных линиях связи. [ ]

Собственная емкость фазного провода с при условии, что применена транспозиция фаз, должна вычисляться с обязательным учетом влияния земли в силу значительного расстояния между фазами разомкнутой линии, которое может заметно превышать высоту подвеса проводов над землей. [ ]

При большой длине кабельной линии (несколько километров) производится транспозиция фаз одножильных кабелей, благодаря чему уменьшается наведенное напряжение в параллельных линиях связи. Каждый кабель подпитывается маслом от отдельной группы баков, соединенных через коллектор. Для наблюдения за исправностью кабелей производится контроль за давлением масла в нем, который осуществляется при помощи электрических сигнальных манометров, показывающих давление в аппаратах подпитки, присоединенных к концевым муфтам. Схема сигнализации предусматривает световой и звуковой сигналы на пульте управления при отклонении давления в кабеле от нормированного. [ ]

Напряжением выше 1000 В применяют голые провода и тросы. Находясь на открытом воздухе, они подвергаются воздействиям атмосферы (ветер, гололед, изменение температуры) и вредных примесей окружающего воздуха (сернистые газы химических заводов, морская соль) и поэтому должны обладать достаточной механической прочностью и быть устойчивыми против коррозии (ржавления).

Раньше на воздушных линиях применялись медные провода, а теперь используют алюминиевые, сталеалюминевые и стальные, а в отдельных случаях и провода из специальных сплавов алюминия – альдрея и др. Грозозащитные тросы выполняются, как правило, из стали.

По конструкции различают:

А) многопроволочные провода из одного металла, состоящие (в зависимости от сечения провода) из 7; 19 и 37 скрученных между собой отдельных проволок (рис. 1, б);

б) однопроволочные провода, состоящие из одной проволоки сплошного сечения (рис. 1, а);

в) многопроволочные провода из двух металлов – стали и алюминия или стали и бронзы. Сталеалюминевые провода обычной конструкции (марки АС) состоят из стальной оцинкованной жилы (однопроволочной или скрученной из 7 или 19 проволок), вокруг которой расположена алюминиевая часть, состоящая из 6, 24 или более проволок (рис. 1, в).

Рис. 1. Конструкция проводов воздушных линий: а – однопроволочные провода; б – многопроволочные провода; в – сталеалюминевые провода.

Конструктивные расчетные данные голых алюминиевых и сталеалюминевых проводов находятся в ГОСТ 839-80.

Медные провода

Медные провода, изготовленные из твердотянутой медной проволоки, обладают малым удельным сопротивлением (r = 18,0 Ом × мм2/ км) и хорошей механической прочностью: предельное сопротивление разрыву sп = 36… 40 кгс/мм2, успешно противостоят атмосферным воздействиям и коррозии от вредных примесей в воздухе.

Медные провода маркируют буквой М с прибавлением номинимального сечения провода. Так, медный провод с номинальным сечением 50 мм2 обозначается М – 50.

Медь в настоящее время является дефицитным дорогостоящим материалом, поэтому в качестве проводов воздушных линий электропередачи практически не используется.

Алюминиевые провода

Алюминиевые провода отличаются от медных значительно меньшей массой, несколько большим удельным сопротивлением (r = 28,7…28,8 Ом × мм2/км) и меньшей механической прочностью: sп = 15,6 кгс/мм2 - для проводов из проволок марки АТ и sп = 16…18 кгс/мм2 из проволки Атп. Алюминиевые провода применяют главным образом в местных сетях. Малая механическая прочность этих проводов не допускает большого тяжения. Чтобы избежать больших стрел провеса и обеспечить требуемый минимальный габарит линии до земли, приходится уменьшить расстояние между опорами, а это удорожает линию.

Для повышения механической прочности алюминиевых проводов их изготовляют многопроволочными, из твердотянутых проволок. Хорошо перенося атмосферные воздействия, алюминиевые провода плохо противостоят воздействию вредных примесей воздуха. Поэтому для воздушных линий, сооружаемых вблизи морских побережий, соленых озер и химических предприятий, рекомендуются алюминиевые провода марки АКП, защищенные от коррозии (алюминиевые коррозионно-стойкие, с заполнением межпроволочного пространства нейтральной смазкой). Провода из алюминия маркируются буквой А с добавлением номинального сечения провода.

Стальные провода

Стальные провода обладают большой механической прочностью: предельное сопротивление при разрыве sп = 55…70 кгс/мм2. Стальные провода бывают как однопроволочными, так и многопроволочными.

Удельное электрическое сопротивление стальных проводов значительно выше, чем алюминиевых, и в сетях переменного тока оно зависит от величины тока, протекающего по проводу. Стальные провода применяют в местных сетях напряжением до 10 кВ при передаче сравнительно небольших мощностей, когда сооружение линий с алюминиевыми проводами менее выгодно.

Существенный недостаток стальных проводов и тросов – подверженность коррозии. Для уменьшения коррозии провода оцинковывают. Выпускаются две марки многопроволочных стальных проводов: ПС (провод стальной) и ПМС (провод омедненный стальной). Провода ПС имеют присадку меди до 0,2 %, а провода марки ПСО изготовляются диаметром 3; 3,5; 5 мм. Стальные многопроволочные грозозащитные тросы выпускаются марок С-35, С-50 и С-70.

Сталеалюминиевые провода

Сталеалюминевые провода имеют то же удельное сопротивление, что и алюминиевые провода равного им сечения, так как в электрических расчетах сталеалюминевых проводов проводимость стальной части не учитывается ввиду ее незначительности по сравнению с проводимостью алюминиевой части проводов.

Конструктивно стальные проволки составляют внутреннюю часть сталеалюминевого провода, а алюминиевые проволки – внешнюю. Сталь предназначена для увеличения механической прочности, алюминий является токопроводящей частью.

Выпускаются следующие марки сталеалюминевых проводов (ГОСТ 839-80):

АС – провод, состоящий из сердечника – стальных оцинкованных проволок, и одного или нескольких наружных повивов из алюминиевых проволок. Провод предназначается для прокладки на суше, кроме районов с загрязненным вредными химическими соединениями воздухом;

АСКС, АСКП – как и провод марки АС, но с заполнением стального сердечника (С) или всего провода (П) смазкой, противодействующей появлению коррозии проволок. Предназначен для прокладки на побережье морей, соленых озер и в промышленных районах с загрязненным воздухом;

АСК – такой же как и провод АСКС, но со стальным сердечником, изолированным полиэтиленовой пленкой. В маркировке провода после буквы А может стоять буква П, которая указывает, что провод повышенной механической прочности (например АпСК).

Сталеалюминевые провода всех марок выпускаются с разным отношением сечения алюминиевой части провода к сечению стального сердечника: в пределах 6,0…6,16 – для работы провода в средних по механической нагрузке условиях; 4,29…4,39 – усиленной прочности; 0,65…1,46 – особо усиленной прочности: 7,71…8,03 – облегченной конструкции и 12,22…18,09 – особо облегченные.

Провода облегченной конструкции применяют на вновь сооружаемых и реконструируемых линиях в районах, где толщина стенки гололеда не превышает 20 мм. Сталеалюминевые провода усиленной прочности рекомендуется применять в районах с толщиной стенки гололеда более 20 мм. Для осуществления больших пролетов на переходах через водные пространства и инженерные сооружения применяют провода особой прочности.

Для более полной характеристики сталеалюминевых проводов в обозначение марки проводов вводится номинальное сечение провода и сечение стального сердечника, например: АС – 150/24 или АСКС – 150/34.

Провода из альдрея

Провода из альдрея обладают примерно тем же электрическим сопротивлением, что и алюминиевые, но имеют большую механическую прочность. Альдрей представляет собой сплав алюминия с незначительными количествами железа (» 0,2 %), магния (» 0,7 %) и кремния (» 0,8 %); по корроизной стойкости он равен алюминию. Недостаток проводов из альдрея – их малая стойкость при вибрации.

Расположение проводов на воздушной линии

Провода на опорах воздушных линий можно располагать различными способами: на одноцепных линиях – треугольником или горизонтально; на двухцепных линиях – обратной елкой или шестиугольником (в виде «бочки»).

Расположение проводов треугольником (рис. 2 , а) применяется на линиях напряжением до 20 кВ включительно и на линиях напряжением 35…330 кВ с металлическими и железобетонными опорами.

Горизонтальное расположение проводов (рис. 2 , б) применятся на линиях напряжением 35…220 кВ с деревянными опорами. Такое расположение проводов является наилучшим по условиям эксплуатации, так как позволяет применять более низкие опоры и исключает схлестывание проводов при сбрасывании гололеда и пляске проводов.

На двухценных линиях провода располагают либо обратной елкой (рис. 2 , в), что удобно по условиям монтажа, но увеличивает массу опор и требует подвески двух защитных тросов, либо шестиугольником (рис. 2 , г).

Последний способ предпочтительнее. Он рекомендован к применению на двухценных линиях напряжением 35…330 кВ.

Для всех перечисленных вариантов характерно несимметричное расположение проводов по отношению друг к другу, что приводит к различию электрических параметров фаз. Для уравнения этих параметров применяют транспозицию проводов, т.е. последовательно меняют на опорах взаимное расположение проводов по отношению друг к другу на различных участках линии. При этом провод каждой фазы проходит одну треть длины линии на одном, вторую – на другом и третью – на третьем месте (рис. 3 .).

Рис. 2. Расположение проводов и защитных тросов на опорах: а – треугольником; б – горизонтальное; в – обратной елкой; г – шестиугольником (бочкой).

Рис. 3

Грозозащитные тросы воздушных линий электропередачи

Грозозащитные тросы подвешивают выше проводов для защиты их от атмосферных перенапряжений. На линиях напряжением ниже 220 кВ тросы подвешивают только на подходах к подстанциям. При этом снижается вероятность перекрытия проводов линии вблизи подстанции. На линиях напряжением 220 кВ и выше тросы подвешиваются вдоль всей линии. Обычно используются тросы из стальных проволок.

Ранее тросы на линиях всех номинальных напряжений заземлялись наглухо на каждой опоре. Опыт эксплуатации показал, что в замкнутых контурах заземляющей системы – тросы – опоры появились токи. Они возникли вследствие действия ЭДС, наводимых в тросах путем электромагнитной индукции. При этом в ряде случаев в многократно заземленных тросах получились значительные потери электроэнергии, особенно в линиях сверхвысоких напряжений.

Исследования показали, что при подвеске тросов повышенной проводимости (сталеалюминиевых) на изоляторах тросы могут быть использованы в качестве проводов связи и в качестве токонесущих проводов для электроснабжения потребителей малой мощности.

Для обеспечения соответствующего уровня грозозащиты линий тросы при этом должны присоединяться к заземленным через искровые промежутки.

Мещеряков И. И.

ОБЛАСТЬ ПРИМЕНЕНИЯ, ОПРЕДЕЛЕНИЯ

2.5.1. Настоящая глава Правил распространяется на ВЛ выше 1 кВ и до 500 кВ, выполняемые неизолированными проводами. Настоящая глава не распространяется на электрические воздушные линии, сооружение которых определяется специальными правилами, нормами и постановлениями (контактные сети электрифицированных железных дорог, трамвая, троллейбуса, сигнальные линии автоблокировки и т. д.). Кабельные вставки в ВЛ должны выполняться в соответствии с требованиями, приведенными в гл. 2.3 и 2.5.69.

2.5.2. Воздушной линией электропередачи выше 1 кВ называется устройство для передачи электроэнергии по проводам, расположенным на открытом воздухе и прикрепленным при помощи изоляторов и арматуры к опорам или кронштейнам и стойкам на инженерных сооружениях (мостах, путепроводах и т. п.).
За начало и конец ВЛ принимаются линейные порталы или линейные вводы распределительных устройств, а для ответвлений - ответвительная опора и линейный портал или линейный ввод распределительного устройства.
2.5.3. Нормальным режимом ВЛ выше 1 кВ называется состояние ВЛ при необорванных проводах и тросах.
Аварийным режимом ВЛ выше 1 кВ называется состояние ВЛ при оборванных одном или нескольких проводах или тросах.
Монтажным режимом ВЛ выше 1 кВ называется состояние в условиях монтажа опор, проводов и тросов.
Габаритным пролетом называется пролет, длина которого определяется нормированным вертикальным габаритом от проводов до земли при устройстве опор на идеально ровной поверхности.
Ветровым пролетом называется длина участка ВЛ, давление ветра на провода или тросы с которого воспринимается опорой.
Весовым пролетом называется длина участка ВЛ, вес проводов или тросов которого воспринимается опорой.
Габаритной стрелой провеса провода называется наибольшая стрела провеса в габаритном пролете.
2.5.4. Населенной местностью называются земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов.
Ненаселенной местностью называются земли единого государственного земельного фонда, за исключением населенной и труднодоступной местности. К ненаселенной местности настоящие Правила относят незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта и сельскохозяйственных машин, сельскохозяйственные угодья, огороды, сады, местности с отдельными редко стоящими строениями и временными сооружениями.
Труднодоступной местностью называется местность, недоступная для транспорта и сельскохозяйственных машин.
Застроенной местностью в настоящих Правилах называются территории городов, поселков и сельских населенных пунктов в границах фактической застройки, защищающие ВЛ с обеих сторон от поперечных ветров.
2.5.5. Большими переходами называются пересечения судоходных рек, судоходных проливов или каналов, на которых устанавливаются опоры высотой 50 м и более, а также пересечения любых водных пространств с пролетом пересечения более 700 м независимо от высоты опор ВЛ.
ОБЩИЕ ТРЕБОВАНИЯ 2.5.6. Механический расчет проводов и тросов ВЛ производится по методу допускаемых напряжений, расчет изоляторов и арматуры - по методу разрушающих нагрузок. По обоим методам расчеты производятся на нормативные нагрузки. Расчет опор и фундаментов ВЛ производится по методу расчетных предельных состояний. Применение других методов расчета в каждом отдельном случае должно быть обосновано в проекте.
В настоящей главе приведены условия для определения нормативных нагрузок. Указания по определению расчетных нагрузок, используемых в расчетах строительных конструкций ВЛ (опор и фундаментов), даны в приложении к настоящей главе.
Коэффициенты перегрузки и расчетные положения, касающиеся специфических условий расчета конструкций ВЛ, приводятся в приложении к настоящей главе.
2.5.7. На ВЛ 110-500 кВ длиной более 100 км для ограничения несимметрии токов и напряжений должен выполняться один полный цикл транспозиции. На двухцепных ВЛ схемы транспозиции должны быть одинаковыми. Шаг транспозиции по условию влияний на линии связи не нормируется.
В электрических сетях 110-500 кВ, содержащих несколько участков ВЛ длиной менее 100 км каждый, транспозиция проводов выполняется непосредственно на промежуточных подстанциях (на шинах, в пролете между концевой опорой и порталом подстанции или на концевой опоре). При этом транспозиция должна осуществляться так, чтобы суммарные длины участков ВЛ с различным чередованием фаз были примерно равны.
В электрических сетях до 35 кВ рекомендуется производить транспозицию фаз на подстанциях так, чтобы суммарные длины участков с различным чередованием фаз были примерно равны.
2.5.8. Обслуживание ВЛ должно предусматриваться с ремонтно-производственных баз (РПБ) и ремонтно-эксплуатационных пунктов (РЭП).
Размещение РПБ и РЭП, выбор их типа, оснащение средствами механизации работ и транспорта должны производиться на основании схем организации эксплуатации, утвержденных в установленном порядке, или действующих нормативов.
РПБ и РЭП должны оборудоваться средствами связи в соответствии со схемой организации эксплуатации, утвержденной в установленном порядке.
Кроме РПБ и РЭП для эксплуатации ВЛ в труднодоступной местности на трассе ВЛ должны быть предусмотрены упрощенные пункты обогрева, количество и расположение которых должны быть обоснованы в проекте.
2.5.9. При ремонтно-производственных базах предусматривается строительство производственно-жилой площади для оперативного и ремонтно-эксплуатационного персонала ВЛ. Объем строительства производственно-жилой площади определяется в соответствии со схемой организации эксплуатации энергосистемы, утвержденной в установленном порядке, или действующими нормативами.
Производственно-жилые помещения размещаются, как правило, на территории подстанций или РПБ и должны быть обеспечены местной телефонной или радиосвязью с возможностью выхода на ближайшую телефонную сеть Министерства связи СССР, вызывной сигнализацией, а также средствами радиофикации.
2.5.10. Укомплектование сетевых предприятий и их структурных подразделений транспортными средствами и средствами механизации работ для эксплуатации и ремонта ВЛ производится в соответствии с перспективной схемой организации эксплуатации, утвержденной в установленном порядке, или действующими нормативами.
Автомашины и самоходные механизмы, предназначенные для эксплуатации и ремонта ВЛ, должны быть оборудованы средствами двусторонней радиосвязи с РПБ.
2.5.11. Численность персонала, объем производственно-жилых помещений РПБ и РЭП, а также количество транспортных средств и механизмов, необходимых для эксплуатации, определяются в соответствии с действующими нормативными документами.
2.5.12. К ВЛ 110 кВ и выше должен быть обеспечен в любое время года подъезд на возможно близкое расстояние, но не далее чем на 0,5 км от трассы ВЛ. Для проезда вдоль трассы указанных ВЛ и для подъезда к ним должна быть расчищена от насаждений, пней, камней и т. п. полоса земли шириной не менее 2,5 м. Исключения допускаются лишь на участках ВЛ:
проходящих по топким болотам и сильно пересеченной местности, где проезд невозможен. В этих случаях необходимо выполнять вдоль трассы ВЛ пешеходные тропки с мостиками шириной не менее 0,4 м или насыпные земляные дорожки шириной не менее 0,8 м;
проходящих по территориям, занятым под садовые и другие ценные культуры и снегозащитные насаждения вдоль железных и шоссейных дорог.
2.5.13. Опоры ВЛ рекомендуется устанавливать вне зоны размыва берегов с учетом возможных перемещений русел и затопляемости района, а также вне мест, где могут быть потоки дождевых и других вод, ледоходы (овраги, поймы рек и др.).
При невозможности установки опор ВЛ вне указанных опасных зон должны быть выполнены мероприятия по защите опор от повреждений (устройство специальных фундаментов, укрепление берегов, откосов, склонов, устройство водоотводных канав, ледорезов или иных сооружений и т. п.).
Установка опор в зоне предполагаемых грязекаменных селевых потоков запрещается.
Наибольший горизонт ледохода и уровня высоких (паводковых) вод принимается с обеспеченностью 2% (повторяемость 1 раз в 50 лет) для ВЛ 330 кВ и ниже 1% (повторяемость 1 раз в 100 лет) или по историческому наблюдаемому уровню при наличии соответствующих данных для ВЛ 500 кВ.
2.5.14. При прохождении ВЛ с деревянными опорами по лесам, сухим болотам и другим местам, где возможны низовые пожары, для защиты опор должна быть предусмотрена одна из следующих мер:
устройство вокруг каждой стойки опоры на расстоянии 2 м от нее канавы глубиной 0,4 и шириной 0,6 м;
уничтожение химическим или другим способом травы и кустарника и очистка от них площадки радиусом 2 м вокруг каждой опоры;
применение железобетонных приставок (пасынков); при этом расстояние от земли до нижнего торца стойки должно быть не менее 1 м.
Для районов многолетней мерзлоты в местах, где возможны низовые пожары, расстояние от деревянной опоры до канавы и размер зоны химической обработки растительности увеличиваются до 5 м.
Установка деревянных опор ВЛ 110 кВ и выше в местах, где возможны торфяные пожары, не рекомендуется.
2.5.15. На опорах ВЛ на высоте 2,5-3,0 м должны быть нанесены следующие постоянные знаки:
порядковый номер - на всех опорах;
номер ВЛ или ее условное обозначение - на концевых опорах, первых опорах ответвлений от линии, на опорах в месте пересечения линий одного напряжения, на опорах, ограничивающих пролет пересечения с железными дорогами и автомобильными дорогами I-V категорий, а также на всех опорах участков трассы с параллельно идущими линиями, если расстояние между их осями - менее 200 м. На двухцепных и многоцепных опорах ВЛ, кроме того, должна быть обозначена соответствующая цепь;
расцветка фаз - на ВЛ 35 кВ и выше на концевых опорах, опорах, смежных с транспозиционными, и на первых опорах ответвлений от ВЛ;
предупреждающие плакаты - на всех опорах ВЛ в населенной местности;
плакаты, на которых указаны расстояния от опоры ВЛ до кабельной линии связи, - на опорах, установленных на расстоянии менее половины высоты опоры до кабелей связи;
информационные знаки, на которых указаны ширина охранной зоны ВЛ и номер телефона владельца ВЛ. (смотри в приложении "Требования к информационным знакам и их установке")
2.5.16. Металлические опоры и подножники, выступающие металлические части железобетонных опор и все металлические детали деревянных и железобетонных опор ВЛ должны быть защищены от коррозии путем оцинковки или окраски стойким покрытием. Очистка, грунтовка и окраска должны производиться только в заводских условиях. На трассе следует производить лишь повторную окраску поврежденных мест.
2.5.17. В соответствии с "Правилами маркировки и светоограждения высотных препятствий" на приаэродромных территориях и воздушных трассах в целях обеспечения безопасности полетов самолетов опоры ВЛ, которые по своему расположению или высоте представляют аэродромные или линейные препятствия для полетов самолетов, должны иметь сигнальное освещение (светоограждение) и дневную маркировку (окраску), выполненные в соответствии со следующими условиями:
1. Опоры ВЛ должны иметь световое ограждение на самой верхней части (точке) и ниже через каждые 45 м. Расстояния между промежуточными ярусами огней, как правило, должны быть одинаковыми.
2. В каждом ряду светоограждения опоры должно устанавливаться не менее двух огней, размещенных на двух внешних сторонах опоры и работающих одновременно или по одному при наличии надежного автоматического устройства для включения резервного огня при выходе из строя основного огня.
3. Заградительные огни должны быть установлены так, чтобы их можно было наблюдать со всех направлений и в пределах от зенита до 5° ниже горизонта.
4. Средства светового ограждения аэродромных препятствий по условиям электроснабжения относятся к электроприемникам I категории. В отдельных случаях допускается электроснабжение заградительных огней по одной линии электропередачи при полной надежности ее работы.
5. Включение и отключение светового ограждения препятствий в районе аэродрома должны производиться владельцами ВЛ и командно-диспетчерским пунктом аэродрома по заданному режиму работы.
Допускается применение надежных автоматических устройств для включения и отключения заградительных огней. На случай отказа в работе этих устройств следует предусматривать возможность включения заградительных огней вручную.
6. Для обеспечения удобного и безопасного обслуживания должны предусматриваться площадки у мест размещения сигнальных огней и оборудования, а также лестницы для доступа к этим площадкам. Для этих целей следует использовать площадки и лестницы, имеющиеся на опорах ВЛ.
7. Для целей дневной маркировки опоры со световым ограждением должны быть окрашены в два цвета - красный (оранжевый) и белый - полосами шириной до 6 м в зависимости от высоты опоры. Число полос должно быть не менее трех, причем первую и последнюю полосы окрашивают в красный (оранжевый) цвет.
8. Определение того, к какому роду препятствий относится конкретная опора ВЛ, расчет высоты маркировки и светового ограждения, определение других требований, предъявляемых к выполнению светоограждения и дневной маркировки, а также согласование требований с органами гражданской авиации осуществляются в соответствии с "Правилами маркировки и светоограждения высотных препятствий".
2.5.18. Для определения мест повреждений на ВЛ 110 кВ и выше должны быть предусмотрены специальные приборы, устанавливаемые на подстанциях. При прохождении этих ВЛ в районах, где может быть гололед с толщиной стенки 15 мм и более, рекомендуется предусматривать устройства, сигнализирующие о появлении гололеда (см. также 2.5.19).
2.5.19. Для ВЛ, проходящих в районах с толщиной стенки гололеда 20 мм и более, а также в местах с частыми образованиями гололеда или изморози в сочетании с сильными ветрами и в районах с частотой и интенсивной пляской проводов, рекомендуется предусматривать плавку гололеда на проводах. Плавка гололеда на тросах ВЛ должна предусматриваться в тех случаях, когда возможно опасное приближение освобождающихся от гололеда проводов к тросам, покрытым гололедом.
При обеспечении плавки гололеда без перерыва электроснабжения потребителей нормативная толщина стенки гололеда может быть снижена на 15 мм, при этом расчетная толщина стенки гололеда должна быть не менее 15 мм.
На ВЛ с плавкой гололеда должны быть предусмотрены устройства, сигнализирующие о появлении гололеда. При выборе установок сигнализатора гололеда следует учитывать необходимое время от поступления сигнала до начала плавки в соответствии с расчетными условиями, принятыми для ВЛ.
2.5.20. Трасса ВЛ должна выбираться по возможности кратчайшей. В районах с большими отложениями гололеда, сильными ветрами, лавинами, оползнями, камнепадами, болотами и т. п. необходимо при проектировании предусматривать по возможности обходы особо неблагоприятных мест, что должно быть обосновано сравнительными технико-экономическими расчетами.
КЛИМАТИЧЕСКИЕ УСЛОВИЯ 2.5.21. Определение расчетных климатических условий, интенсивности грозовой деятельности и пляски проводов для расчета и выбора конструкций ВЛ должно производиться на основании карт климатического районирования с уточнением по региональным картам и материалам многих наблюдений гидрометеорологических станций и метеопостов управлений гидрометеослужбы и энергосистем за скоростью ветра, интенсивностью и плотностью гололедно-изморозевых отложений и температурой воздуха, грозовой деятельностью и пляской проводов в зоне трассы сооружаемой ВЛ.
При обработке данных наблюдений должно быть учтено влияние микроклиматических особенностей на интенсивность гололедообразования и на скорость ветра в результате действия как природных условий (пересеченный рельеф местности, высота над уровнем моря, наличие больших озер и водохранилищ, степень залесенности и т. д.), так и существующих или проектируемых инженерных сооружений (плотины и водосбросы, пруды-охладители, полосы сплошной застройки и т. п.).
Для ВЛ, сооружаемых в малоизученных районах*, значения скоростного напора ветра и толщины стенки гололеда рекомендуется принимать на район выше.
* К малоизученным районам относятся районы, где:
1) Отсутствуют метеостанции либо есть метеостанции, но их количество недостаточно или они нерепрезентативны.
2) Отсутствует опыт эксплуатации.
2.5.22. Максимальные нормативные скоростные напоры ветра и толщину гололедно-изморозевых отложений определяют, исходя из их повторяемости 1 раз в 15 лет для ВЛ 500 кВ, 1 раз в 10 лет для ВЛ 6-330 кВ и 1 раз в 5 лет для ВЛ 3 кВ и ниже.
2.5.23. Максимальные нормативные скоростные напоры для высоты до 15 м от земли принимаются по табл. 2.5.1 в соответствии с картой районирования территории СССР по скоростным напорам ветра (рис. 2.5.1-2.5.4), но не ниже 40 даН/м² для ВЛ 6-330 кВ и 55 даН/м² для ВЛ 500 кВ.
Рис. 2.5.1. Карта районирования территории СНГ по скоростным напорам ветра. Лист 1
Рис. 2.5.2. Карта районирования территории СНГ по скоростным напорам ветра. Лист 2
Рис. 2.5.3. Карта районирования территории СНГ по скоростным напорам ветра. Лист 3
Рис. 2.5.4. Карта районирования территории СНГ по скоростным напорам ветра. Лист 4
2.5.24. Скоростной напор ветра на провода ВЛ определяется по высоте расположения приведенного центра тяжести всех проводов, скоростной напор на тросы - по высоте расположения центра тяжести тросов. При расположении центра тяжести на высоте до 15 м скоростной напор принимается по табл. 2.5.1.
При высоте более 15 м скоростной напор определяется путем умножения значения напора, указанного в табл. 2.5.1 для высоты до 15 м, на поправочный коэффициент по табл. 2.5.2, учитывающий возрастание скорости ветра по высоте.

Таблица 2.5.1. Максимальный нормативный скоростной напор ветра на высоте до 15 м от земли


Примечания: 1. Для повторяемости 1 раз в 10 лет и 1 раз в 15 лет в таблице даны унифицированные значения скоростных напоров и скоростей ветра.
2. Значения скоростных напоров при их уточнении на основании обработки фактически замеренных скоростей определяются по формуле
,
где - скорость ветра на высоте 10 м над поверхностью земли (при двухминутном интервале усреднения), превышаемая в среднем один раз в 5, 10 или 15 лет; - поправочный коэффициент к скоростям ветра, полученным из обработки наблюдений по флюгеру, принимается не более единицы; при использовании малоинерционных анемометров коэффициент принимается равным единице.
Полученные значения применяются до высоты 15 м. Рекомендуется округлять их до ближайшего указанного в таблице значения.
Высота расположения приведенного центра тяжести проводов или тросов определяется для габаритного пролета по формуле
,
где - средняя высота крепления провода к изоляторам или средняя высота крепления тросов на опоре, отсчитываемая от отметки земли в местах установки опор, м; - стрела провеса провода или троса, условно принимаемая наибольшей (при высшей температуре или гололеде без ветра), м.
Полученные значения скоростных напоров ветра должны быть округлены до целого числа.
2.5.25. Скоростной напор ветра на провода и тросы больших переходов через водные пространства определяется по указаниям 2.5.24, но с учетом следующих дополнительных требований:
1. Для перехода, состоящего из одного пролета, высота расположения приведенного центра тяжести проводов или тросов определяется по формуле
,
где - высота крепления тросов или средняя высота крепления проводов к изоляторам на опорах перехода, отсчитываемая от меженного уровня реки или нормального горизонта пролива, канала, водохранилища, м; - наибольшая стрела провеса провода или троса перехода, м.

Таблица 2.5.2. Поправочный коэффициент на возрастание скоростных напоров ветра по высоте

Высота, м Коэффициент Высота, м Коэффициент
До 15 1,0 100 2,1
20 1,25 200 2,6
40 1,55 350 и выше 3.1
60 1,75

Примечание. Для промежуточных высот значения поправочных коэффициентов определяются по линейной интерполяции.
2. Для перехода, состоящего из нескольких пролетов, скоростной напор ветра на провода или тросы определяется для высоты , соответствующей средневзвешенному значению высот приведенных центров тяжести проводов или тросов во всех пролетах перехода и вычисляемой по формуле
,
где - высоты приведенных центров тяжести проводов или тросов над меженным уровнем реки или нормальным горизонтом пролива, канала, водохранилища в каждом из пролетов, м. При этом если пересекаемое водное пространство имеет высокий, незатопляемый берег, на котором расположены как переходные, так и смежные с ними опоры, то высоты приведенных центров тяжести в пролете, смежном с переходным, отсчитываются от отметки земли в этом пролете; - длины пролетов, входящих в переход, м.
2.5.26. Скоростной напор ветра на конструкции опор определяется с учетом его возрастания по высоте. Для отдельных зон высотой не более 15 м значение поправочных коэффициентов следует принимать постоянным, определяя его по высоте средних точек соответствующих зон, отсчитываемой от отметки земли в месте установки опоры.
2.5.27. Для участков ВЛ, сооружаемых в застроенной местности, максимальный нормативный скоростной напор ветра допускается уменьшать на 30% (скорость ветра - на 16%) по сравнению с принятым для района прохождения ВЛ, если средняя высота окружающих зданий составляет не менее 2/3 высоты опор. Такое же уменьшение скоростного напора ветра допускается для ВЛ, трасса которых защищена от поперечных ветров (например, в лесных массивах заповедников, в горных долинах и ущельях).
2.5.28. Для участков ВЛ, находящихся в местах с сильными ветрами (высокий берег большой реки, резко выделяющаяся над окружающей местностью возвышенность, долины и ущелья, открытые для сильных ветров, прибрежная полоса больших озер и водохранилищ в пределах 3-5 км), при отсутствии данных наблюдений максимальный скоростной напор следует увеличивать на 40% (скорость ветра - на 18%) по сравнению с принятым для данного района. Полученные цифры рекомендуется округлять до ближайшего значения, указанного в табл. 2.5.1.
2.5.29. При расчете проводов и тросов на ветровые нагрузки направление ветра следует принимать под углом 90°, 45° и 0° к ВЛ. При расчете опор следует принимать направление ветра под углом 90 и 45° к ВЛ.
2.5.30. Нормативная ветровая нагрузка P , даН, на провода и тросы, действующая перпендикулярно проводу (тросу), для каждого расчетного режима определяется по формуле
,
где - коэффициент, учитывающий неравномерность скоростного напора ветра по пролету ВЛ, принимаемый равным: 1 при скоростном напоре ветра до 27 даН/м² , 0,85 при 40 даН/м² , 0,75 при 55 даН/м² , 0,7 при 76 даН/м² и более (промежуточные значения определяются линейной интерполяцией); K l - коэффициент, учитывающий влияние длины пролета на ветровую нагрузку, равный 1,2 при длине пролета до 50 м, 1,1 при 100 м, 1,05 при 150 м, 1 при 250 м и более (промежуточные значения K l определяются интерполяцией); C k - коэффициент лобового сопротивления, принимаемый равным: 1,1 для проводов и тросов диаметром 20 мм и более, свободных от гололеда, 1,2 для всех проводов и тросов, покрытых гололедом, и для проводов и тросов диаметром менее 20 мм, свободных от гололеда; q - нормативный скоростной напор ветра в рассматриваемом режиме, даН/м² ; - площадь диаметрального сечения провода, м² (при гололеде с учетом нормативной толщины стенки гололеда); - угол между направлением ветра и осью ВЛ.
При измерении скорости ветра по приборам с 10-минутным интервалом осреднения в приведенную формулу следует вводить коэффициент 1,3.
2.5.31. Нормативная масса гололедных отложений на проводах и тросах определяется, исходя из цилиндрической формы отложений с плотностью 0,9 г/см 3 .
Толщина стенки гололеда, приведенная к высоте 10 м от земли и к диаметру провода 10 мм при повторяемости 1 раз в 5 и 10 лет, определяется в соответствии с картой районирования территории СССР по гололеду (рис. 2.5.5-2.5.10) и табл. 2.5.3. Толщина стенки гололеда может быть уточнена на основании обработки многолетних наблюдений.
Рис. 2.5.5. Карта районирования территории СНГ по толщине стенки гололеда. Лист 1
Рис. 2.5.6. Карта районирования территории СНГ по толщине стенки гололеда. Лист 2
Рис. 2.5.7. Карта районирования территории СНГ по толщине стенки гололеда. Лист 3
Рис. 2.5.8. Карта районирования территории СНГ по толщине стенки гололеда. Лист 4
Рис. 2.5.9. Карта районирования территории СНГ по толщине стенки гололеда. Лист 5
Рис. 2.5.10. Карта районирования территории СНГ по толщине стенки гололеда. Лист 6

Таблица 2.5.3. Нормативная толщина стенки гололеда для высоты 10 м над поверхностью земли


Толщина стенки гололеда с повторяемостью 1 раз в 15 лет в I-IV районах по гололеду, а также с любой повторяемостью в особых районах по гололеду должна приниматься на основании обработки данных фактических наблюдений.
Принимаемая в расчетах толщина стенки гололеда для повторяемости один раз в 5 и 10 лет должна быть не менее 5 мм, а для повторяемости 1 раз в 15 лет - не менее 10 мм.
При высоте расположения приведенного центра тяжести проводов до 25 м поправки на толщину стенки гололеда в зависимости от высоты и диаметра проводов и тросов не вводятся.
При высоте расположения приведенного центра тяжести проводов более 25 м толщина стенки гололеда вычисляется в соответствии со СНиП 2.01.07-85 "Нагрузки и воздействия" Госстроя России, причем высота для определения поправочного коэффициента принимается в соответствии с указаниями 2.5.25 такой же, как для вычисления скоростного напора ветра. При этом исходную толщину стенки гололеда (для высоты 10 м и диаметра 10 мм) следует принимать без увеличения, предусмотренного 2.5.32.
Толщина стенки гололеда до 22 мм округляется до ближайшего значения, кратного 5 мм, а толщина более 22 мм - до 1 мм.
2.5.32. Для участков ВЛ, проходящих по плотинам гидроэлектростанций и вблизи прудов-охладителей, при отсутствии данных наблюдений следует принимать толщину стенки гололеда на 5 мм больше, чем для всей линии.
2.5.33. Расчетные температуры воздуха принимаются одинаковыми для ВЛ всех напряжений по данным фактических наблюдений и округляются до значений, кратных пяти.
2.5.34. Расчет ВЛ по нормальному режиму работы необходимо производить для следующих сочетаний климатических условий:
1) высшая температура, ветер и гололед отсутствуют.
2) низшая температура, ветер и гололед отсутствуют.
3) среднегодовая температура , ветер и гололед отсутствуют.
4) провода и тросы покрыты гололедом, температура минус 5°С, ветер отсутствует.
5) максимальный нормативный скоростной напор ветра , температура минус 5°С, гололед отсутствует.
6) провода и тросы покрыты гололедом, температура минус 5°С, скоростной напор ветра 0,25 (скорость ветра 0,5 ). В районах с толщиной стенки гололеда 15 мм и более скоростной напор ветра при гололеде должен быть не менее 14 даН/м² (скорость ветра - не менее 15 м/с).
7) Фактические сочетания скоростных напоров ветра и размеров отложений гололеда на проводах и тросах при температуре минус 5° С в режимах:
7.1. Максимальное отложение гололеда на проводах и тросах и скоростной напор ветра при этом отложении.
7.2. Максимальный скоростной напор ветра и отложения гололеда на проводах и тросах при этом скоростном напоре.
Нагрузки по пунктам 7.1. и 7.2 определяются по региональным картам гололедно-ветровых нагрузок. При отсутствии региональных карт значения нагрузок определяются путем обработки соответствующих метеоданных по "Методике расчета и построения региональных карт результирующей гололедно-ветровой нагрузки ВЛ" и по "Методике разработки региональных карт нормативных районов ветровых нагрузок при гололеде для проектирования и эксплуатации ВЛ", разработанных ВНИИЭ и утвержденных Главтехуправлением Минэнерго СССР, при условии, что для характеристики климатических условий на 100 км ВЛ имеется 2 и более репрезентативных метеорологических станций с рядами наблюдений за фактическими сочетаниями отложений и наблюдаемых при них скоростей ветра.
В тех случаях, когда определение нагрузок не представляется возможным, расчет ВЛ на воздействие гололедно-ветровых нагрузок следует производить на условия согласно пункту 6. При этом скоростной напор ветра при гололеде следует принимать не более 30 даН/м 2 (V=22 м/с).
При расчете ВЛ по пп.6 и 7.1 в районах с нормативной толщиной стенки гололеда до 10 мм соответствующий скоростной напор ветра при гололеде должен быть не менее 6,25 даН/м 2 (V = 10 м/с), а в районах с нормативной толщиной стенки гололеда 15 мм и более - не менее 14,0 даН/м 2 (V = 15 м/с).
Для районов со среднегодовой температурой минус 5° С и ниже температуру в пп. 4, 5, 6 и 7 следует принимать равной минус 10° С.
2.5.35. Расчет ВЛ по аварийному режиму работы необходимо производить для следующих сочетаний климатических условий:
1. Среднегодовая температура , ветер и гололед отсутствуют.
2. Низшая температура , ветер и гололед отсутствуют.
3. Провода и тросы покрыты гололедом, температура минус 5°С, ветер отсутствует.
4. Провода и тросы покрыты гололедом, температура минус 5°С, скоростной напор ветра 0,25 .
2.5.36. При проверке опор ВЛ по условиям монтажа необходимо принимать следующие сочетания климатических условий: температура минус 15°С, скоростной напор ветра на высоте до 15 м от земли 6,25 даН/м² , гололед отсутствует.
2.5.37. При расчете приближений токоведущих частей к элементам опор ВЛ и сооружений необходимо принимать следующие сочетания климатических условий:
1. При рабочем напряжении: максимальный нормативный скоростной напор ветра , температура минус 5°С (см. также 2.5.34).
2. При грозовых и внутренних перенапряжениях: температура плюс 15°С, скоростной напор (), но не менее 6,25 даН/м² .
3. Для обеспечения безопасного подъема на опору под напряжением: температура минус 15°С, ветер и гололед отсутствуют.
Значение принимается таким же, как для определения ветровой нагрузки на провода.
Расчет приближений по п. 2 должен производиться также при отсутствии ветра.
Угол отклонения проводов и тросов определяется по формуле
,
где - коэффициент, учитывающий динамику колебаний провода при его отклонениях и принимаемый равным: 1 при скоростном напоре ветра до 40 даН/м² , 0,95 при 45 даН/м² , 0,9 при 55 даН/м² , 0,85 при 65 даН/м² , 0,8 при 80 даН/м² и более (промежуточные значения определяются линейной интерполяцией); - нормативная ветровая нагрузка на провод, даН; - нагрузка на гирлянду от веса провода, даН; - вес гирлянды изоляторов, даН.
Диаметр проводов, их сечение и количество в фазе, а также расстояние между проводами расцепленной фазы определяются расчетом.
2.5.39. По условиям механической прочности на ВЛ должны применяться многопроволочные алюминиевые и сталеалюминиевые провода и провода из алюминиевого сплава АЖ и многопроволочные тросы.
Минимальные допустимые сечения проводов:


Минимальные допустимые сечения проводов приведены в табл. 2.5.4.

Таблица 2.5.4. Минимальное допустимое сечение сталеалюминиевых проводов ВЛ по условиям механической прочности


На ВЛ 10 кВ и ниже, проходящих в ненаселенной местности с расчетной толщиной стенки гололеда до 10 мм, в пролетах без пересечений с инженерными сооружениями допускается применять однопроволочные стальные провода марок, разрешенных к применению специальными указаниями.
В качестве грозозащитных тросов следует использовать стальные канаты сечением не менее 35 мм² из проволок с пределом прочности не менее 120 даН/мм² . На особо ответственных переходах и в зонах химического воздействия, а также при использовании грозозащитного троса для высокочастотной связи и в случаях, когда это необходимо по условиям термической стойкости (см. 2.5.42), в качестве грозозащитного троса следует применять сталеалюминиевые провода общего применения или специальные.
В пролетах пересечений с надземными трубопроводами и канатными дорогами допускается применение стальных грозозащитных тросов. В пролетах пересечений с трубопроводами, не предназначенными для транспортировки горючих жидкостей и газов, допускается применение стальных проводов сечением 25 мм² и более.
В пролетах пересечений ВЛ с железными дорогами в качестве грозозащитных тросов следует применять стальные канаты с пределом прочности не менее 120 даН/мм² сечением не менее 35 мм² в I и II районах по гололеду и не менее 50 мм² в остальных районах по гололеду.
Для снижения потерь электроэнергии на перемагничивание стальных сердечников в сталеалюминиевых проводах рекомендуется при прочих равных условиях применять провода с четным числом повивов алюминиевых проволок.

Таблица 2.5.5. Наибольший допустимый пролет ВЛ с алюминиевыми, сталеалюминиевыми и стальными проводами и проводами из алюминиевых сплавов малых сечений

Марка провода Предельный пролет, м, при толщине стенки гололеда
до 10 мм 15 мм 20 мм
Алюминиевые:
А 35 140 - -
А 50 160 90 60
А 70 190 115 75
А 95 215 135 90
А 120 270 150 110
А 150 335 165 130
Из алюминиевых сплавов:
АН 35 210 115 75
АН 50 265 155 100
АН 70 320 195 130
АН 95 380 235 160
АН 120 435 270 185
АН 150 490 290 205
АЖ 35 280 175 120
АЖ 50 350 220 140
АЖ 70 430 270 180
АЖ 95 500 330 230
АЖ 120 550 370 260
АЖ 150 605 400 290
Сталеалюминиевые:
АС 25/4,2 230 - -
АС 35/6,2 320 200 140
АС 50/8,0 360 240 160
АС 70/11 430 290 200
АС 95/16, АС 95/15 525 410 300
АС 120/19 660 475 350
Стальные ПС 25 520 220 150

Примечания: 1. Указанные значения предельных пролетов действительны для алюминиевых проводов из проволоки АТ и АТп.
2. Значения предельных пролетов вычислены из условия достижения 80% предела прочности в точках его подвеса, расположенных на одинаковой высоте, при удвоенном весе гололеда и допускаемых напряжениях по табл. 2.5.7.
2.5.40. Для сталеалюминиевых проводов рекомендуются следующие области применения:
1. В районах с толщиной стенки гололеда до 20 мм: при сечениях до 185 мм² - с отношением А: С = 6,0 6,25, при сечениях 240 мм² и более - с отношением А: С = 7,71 8,04.
2. В районах с толщиной стенки гололеда более 20 мм: при сечениях до 95 мм² - с отношением А: С=6,0, при сечениях 120-400 мм² - с отношением А: С = 4,29 4,39, при сечениях 450 мм² и более - с отношением А: С = 7,71 8,04
3. На больших переходах с пролетами более 800 м - с отношением А: С=1,46.
Выбор других марок проводов обосновывается технико-экономическими расчетами.
4. При сооружении ВЛ в местах, где опытом эксплуатации установлено разрушение сталеалюминиевых проводов от коррозии (побережья морей, соленых озер, промышленные районы и районы засоленных песков, прилежащие к ним районы с атмосферой воздуха типов II и III), а также в местах, где такое разрушение ожидается на основании данных изысканий, следует применять сталеалюминиевые провода марок АСКС, АСКП, АСК в соответствии с ГОСТ 839-80, а алюминиевые провода - марки АКП.
На равнинной местности при отсутствии данных эксплуатации ширину прибрежной полосы, к которой относится указанное требование, следует принимать равной 5 км, а полосы от химических предприятий - 1,5 км.
2.5.41. По условиям короны при отметках до 1000 м над уровнем моря рекомендуется применять на ВЛ провода диаметром не менее указанных в табл. 2.5.6.

Таблица 2.5.6. Минимальный диаметр проводов

ВЛ по условиям короны, мм


При выборе конструкции ВЛ и количества проводов в фазе, а также междуфазных расстояний ВЛ необходимо ограничивать напряженность электрического поля на поверхности проводов до уровней, допустимых по короне (см. гл. 1.3) и уровню радиопомех.
2.5.42. Сечение грозозащитного троса, выбранное по механическому расчету, должно быть проверено на термическую стойкость в соответствии с указаниями гл. 1.4. На участках с изолированным креплением троса (см. 2.5.67) проверка на термическую стойкость не производится.
2.5.43. Механический расчет проводов и тросов ВЛ выше 1 кВ должен производиться на основании следующих исходных условий:
1) при наибольшей внешней нагрузке;
2) при низшей температуре и отсутствии внешних нагрузок;
3) при среднегодовой температуре и отсутствии внешних нагрузок.
Допустимые механические напряжения в проводах и тросах при этих условиях приведены в табл. 2.5.7.

Таблица 2.5.7. Допустимое механическое напряжение в проводах и тросах ВЛ напряжением выше 1 кВ

8,04
Провода и тросы Допустимое напряжение, % предела прочности при растяжении Допустимое напряжение, даН/мм² , для проводов из алюминиевой проволоки
АТ АТп
при наибольшей нагрузке и низшей температуре при среднегодовой температуре при наибольшей нагрузке и низшей температуре 12,2 8,1 12,6 8,4
185, 300 и 500 при А: С = 1,46 25,0 16,5 25,2 16,8
330 при А: С = 12,22 10,8 7,2 11,7 7,8
9,7 6,5 10,4 6,9
Стальные:
ПС всех сечений 50 35 31 21,6 - -
тросы ТК всех сечений По ГОСТ или ТУ** - - -
** В зависимости от разрывного усилия троса в целом.
Из алюминиевого сплава сечением, мм²:
16-95 из сплава АН 40 30 8,3 6,2 - -
16-95 из сплава АЖ 11,4 8,5 - -
120 и более из сплава АН 45 30 9,4 6,2 - -
120 и более из сплава АЖ 12,8 8,5 - -

2.5.44. В механических расчетах проводов и тросов ВЛ следует принимать физико-механические характеристики, приведенные в табл. 2.5.8.
Область применения (минимальные допустимые сечения и т. п.) проводов из алюминиевого сплава марки АН соответствует области применения алюминиевых проводов, а проводов из алюминиевого сплава марки АЖ - области применения сталеалюминиевых проводов.
2.5.45. Механические напряжения, возникающие в высших точках подвески алюминиевых и стальных проводов, не должны превышать 105% значений, приведенных в табл. 2.5.7. Напряжения в высших точках подвески сталеалюминиевых проводов на всех участках ВЛ, в том числе и на больших переходах, должны составлять не более 110% значений, указанных в табл. 2.5.7.
2.5.46. На ВЛ должны быть защищены от вибрации:
1. Одиночные алюминиевые и сталеалюминиевые провода и провода из алюминиевого сплава сечением до 95 мм² в пролетах длиной более 80 м, сечением 120-240 мм² в пролетах более 100 м, сечением 300 мм² и более в пролетах более 120 мм, стальные многопроволочные провода и тросы всех сечений в пролетах более 120 м - при прохождении ВЛ по открытой ровной или малопересеченной местности, если механическое напряжение при среднегодовой температуре составляет более, даН/мм²:
  • для алюминиевых проводов и проводов из алюминиевого сплава АН3,5
  • для сталеалюминиевых проводов и проводов из алюминиевого сплава АЖ4,0
  • для стальных проводов и тросов18,0

При прохождении ВЛ по сильно пересеченной или застроенной местности, а также по редкому или низкорослому (ниже высоты подвеса проводов) лесу длина пролетов и значения механических напряжений, при превышении которых необходима защита от вибрации, увеличиваются на 20%.
2. Провода расщепленной фазы, состоящей из двух проводов, соединенных распорками, в пролетах длиной более 150 м - при прохождении ВЛ по открытой ровной или слабо пересеченной местности, если механическое напряжение в проводах при среднегодовой температуре составляет более, даН/мм²:
  • для алюминиевых проводов и проводов из алюминиевого сплава АН4,0
  • для сталеалюминиевых проводов и проводов из алюминиевого сплава АЖ.4,5

При прохождении ВЛ по сильно пересеченной или застроенной местности, а также по редкому или низкорослому (ниже высоты подвеса проводов) лесу значения механических напряжений, при превышении которых необходима защита от вибрации, увеличиваются на 10%.
При применении расщепленной фазы, состоящей из трех или четырех проводов с групповой установкой распорок, защита от вибрации не требуется (кроме случаев, указанных в п. 3).
3. Провода и тросы при пересечении рек, водоемов и других водных преград с пролетами более 500 м - независимо от числа проводов в фазе и значения механического напряжения; при этом защите от вибрации подлежат все пролеты участка перехода.

Таблица 2.5.8. Физико-механические характеристики проводов и тросов

Провода и тросы Приведенная нагрузка от собственного веса, 10 -3 даН/ (м·мм²) Модуль упругости, 10 3 даН/мм² Температурный коэффициент линейного удлинения, 10 -0 град -1 Предел прочности при растяжении, даН/мм² , провода и троса в целом
из проволоки из стали и сплавов
АТ АТп
Алюминиевые А, АКП сечением, мм²:
до 400, за исключением 95 и 240 2,75 6,3 23,0 16 17 -
450 и более, а также 95 и 240 2,75 6,3 23,0 15 16 -
Сталеалюминиевые АС, АСКС, АСКП, АСК сечением, мм²:
10 и более при А: С = 6,06,25 3,46 8,25 19,2 29 30 -
70 при А: С = 0,95 5,37 13,4 14,5 67 68 -
95 при А: С = 0,65 5,85 14,6 13,9 76 77 -
120 и более при А: С = 4,294,39 3,71 8,9 18,3 33 34 -
150 и более при А: С = 7,718,04 3,34 7,7 19,8 27 28 -
185 и более при А: С = 1,46 4,84 11,4 15,5 55 56 -
330 при А: С= 12,22 3,15 6,65 21,2 24 26 -
400 и 500 при А: С = 17,93 и 18,09 3,03 6,65 21.2 21,5 23 -
Стальные:
ПС всех сечений 8,0 20,0 12,0 - - 62
тросы ТК всех сечений 8,0 20,0 12,0 - - *
* Принимается по соответствующим ГОСТ, но не менее 120 даН/мм² .
из алюминиевого сплава АН 2,75 6,5 23,0 - - 20,8
из алюминиевого сплава АЖ 2,75 6,5 23,0 - - 28,5

На участках ВЛ, защищенных от поперечных ветров, при прохождении по лесному массиву с высотой деревьев более высоты подвеса проводов, вдоль горной долины и т. п. защита проводов и тросов от вибрации не требуется.
2.5.47. Для защиты от вибрации алюминиевых проводов и проводов из алюминиевых сплавов АЖ и АН сечением до 95 мм² и сталеалюминиевых проводов сечением до 70 мм² рекомендуется применять гасители вибрации петлевого типа, а для алюминиевых и сталеалюминиевых проводов большего сечения и стальных проводов и тросов - гасители вибрации обычного типа.
2.5.48. На проводах расщепленной фазы в пролетах и петлях анкерных опор должны быть установлены дистанционные распорки. Расстояния между распорками или группами распорок, устанавливаемыми в пролете, не должны превышать 75 м.

Иногда виток состоит не из одного, а из нескольких параллельных проводов. При этом провода должны иметь равную длину и одинаковое сцепление с полем рассеяния, иначе будут значительные дополнительные потери. Поэтому параллельные провода, образующие виток, если они расположены перпендикулярно потоку рассеяния, должны соответственно транспонироваться, т. е. меняться местами.

Транспозиция параллельных проводов в непрерывной обмотке

В непрерывной обмотке параллельные провода меняют местами в переходах из одной катушки в другую, причем число переходов получается равным числу параллельных проводов в витке. Как видно, параллельные провода при переходе из первой катушки во вторую меняются местами, т. е. верхние провода становятся нижними, а нижние - верхними. Чтобы это осуществить, переходы проводов смещают один по отношению к другому. Смещение производят обычно на один пролет между рейками. В результате виток, состоящий из двух параллельных проводов, занимает своими переходами два пролета, из трех - три пролета, из четырех - четыре.
Практикой изготовления многопараллельных непрерывных обмоток выработано правило, согласно которому началом и концом катушки, виток которой состоит из нечетного числа параллельных проводов, считают средний провод, а при четном числе параллельных проводов - последний провод первой половины всех проводов. Так, при двухпроводном витке это будет первый верхний провод, при трехпроводном витке - второй средний провод, а при четырехпроводном витке - второй провод, считая сверху, и т. д.
Место изгиба каждого из параллельных проводов для перехода из катушки в катушку, как уже указывалось, предварительно изолируют электрокартоном. При изгибе для наружного перехода накладывают полоску на провод снизу, а для внутреннего - коробочку на провод сверху.
Места переходов, а соответственно и изгибов проводов, размечают в соответствии с чертежом обмотки в развернутом виде, где показаны и пронумерованы все рейки и пролеты и изображены все переходы и транспозиции. На чертеже наружные переходы показывают оплошными линиями, а внутренние - пунктирными.
При выполнении наружных переходов из неперекладной катушки в перекладную сначала изгибают верхний провод, а затем, идя последовательно сверху вниз, остальные. При этом смещают место изгиба для каждого последующего провода на одну рейку. Переходы всех проводов укладывают так, чтобы верхние провода переходили соответственно в нижние, а нижние - в верхние.
Для намотки перекладной катушки необходимо плавно спустить переходы с верха постоянной катушки вниз, на рейки к основанию временной катушки. Для этого применяют технологический клин, который набирают ступеньками из электрокартонных полос шириной, равной примерно ширине провода вместе с изоляцией. Длину клина в зависимости от числа параллельных проводов в витке берут равной 1/3-1/2 витка.
Клин должен иметь наибольшую высоту, равную радиальному размеру катушки минус один виток. Эта высота должна постепенно уменьшаться: под вторым переходом - на толщину одного провода, под третьим переходом - еще на толщину одного провода и т. д., а за пределами всех переходов равномерно и постепенно сойти на нет. После того как клин скомплектован его бандажируют вразгон по всей длине киперной лентой. Изготовленный таким образом клин подкладывают под переходы и плавно спускают их на рейки. Затем наматывают перекладную катушку.
При намотке первого витка перекладной катушки провода укладываются на рейки по небольшой спирали, причем начало витка несколько приподнято по сравнению с концом. Поэтому под конец первого витка также подкладывают на некоторой длине технологический клин, набранный из электрокартонных полос. При наличии этого клина второй виток ложится без усилий и равномерно на первый виток и все временные витки устойчиво лежат один на другом. После намотки временной катушки размечают места изгибов для внутренних переходов в следующую постоянную неперекладную катушку и выгибают все параллельные провода. Предварительно место изгиба каждого провода изолируют электрокартонной коробочкой, которую накладывают на провод сверху и закрепляют лентой.
При выполнении внутренних переходов из перекладной катушки в неперекладную сначала выгибают нижний провод, а затем, идя последовательно снизу вверх, все остальные. При этом смещают место изгиба для каждого последующего провода на одну рейку. Переходы всех проводов укладывают так, чтобы нижние провода переходили соответственно в верхние, а верхние-в нижние.
Между параллельными проводами, идущими с барабанов, наблюдаются небольшие линейные смещения вследствие разности в диаметрах этих проводов при намотке. Чтобы смещения в процессе перекладывания витков не увеличивались, провода зажимают ручными тисками или рукой. Затем производят перекладку витков,
наблюдая за тем, чтобы провода не смещались один относительно другого. Перекладывание витков из нескольких параллельных проходов производят так же, как и витков из одного провода.
Намотку непрерывных катушек производят двое рабочих; один находится по одну сторону станка, а второй - по другую.

Транспозиция (в электротехнике) Транспозиция в электротехнике, изменение взаимного расположения проводов отдельных фаз по длине воздушной линии электропередачи (ЛЭП) для уменьшения нежелательного влияния ЛЭП друг на друга и на близлежащие линии связи. При Т. вся ЛЭП условно разделяется на участки, число которых кратно числу фаз. При переходе с одного участка на другой фазы меняются местами так, что каждая из них попеременно занимает положение остальных. Длина участка определяется условиями надёжной работы ЛЭП, стоимостью её сооружения и требованиями симметрии её токов и напряжений, возрастающей в результате выравнивания значений индуктивности и ёмкости фаз ЛЭП при Т. Выполняют Т. на ЛЭП длиной свыше 100 км и напряжением от 110 кв и выше. Полный цикл Т. фаз осуществляется на длине не свыше 300 км .

Лит.: Мельников Н. А., Электрические сети и системы, М., 1975.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Транспозиция (в электротехнике)" в других словарях:

    - (транспонирование, транспонировка; от лат. trānspositiō «перекладывание») многозначный термин. Транспозиция в комбинаторике перестановка, которая меняет местами только два элемента. Транспозиция в генетике перемещение… … Википедия

    транспозиция (проводов) ЛЭП - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN transmission line transposition …

    транспозиция (фазных) проводов - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN conductor transposition … Справочник технического переводчика

    транспозиция в пролёте - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN span transpositionspan type transposition … Справочник технического переводчика

    транспозиция проводов ВЛ - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN open wire transposition … Справочник технического переводчика

    транспозиция фаз - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN phase transposition … Справочник технического переводчика

    I Транспозиция (от позднелат. transpositio перестановка) (транспонировка) в музыке, перенос всех звуков музыкального произведения на определённый интервал вверх или вниз. Т. на любой интервал, кроме октавы, меняет тональность. Цель Т.… … Большая советская энциклопедия

    обратная транспозиция витков (обмотки) - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN inverted turn transposition … Справочник технического переводчика

    скрещивание проводов - транспозиция — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы транспозиция EN cross connection … Справочник технического переводчика