Фенол (гидроксибензол, карболовая кислота). Применение фенола

Химические свойства фенолов определяются наличием в молекуле гидроксильной группы и бензольного кольца.

    Реакции по гидроксильной группе

Фенолы, так же, как и алифатические спирты, обладают кислыми свойствами, т.е. способны образовывать соли – феноляты . Однако они более сильные кислоты и поэтому могут взаимодействовать не только со щелочными металлами (натрий, литий, калий), но и со щелочами и карбонатами:

Константа кислотности рК а фенола равна 10. Высокая кислотность фенола связана с акцепторным свойством бензольного кольца (эффект сопряжения ) и объясняется резонансной стабилизацией образующегося фенолят-аниона. Отрицательный заряд на атоме кислорода фенолят-аниона за счет эффекта сопряжения может перераспределяться по ароматическому кольцу, этот процесс можно описать набором резонансных структур:

Ни одна из этих структур в отдельности не описывает реального состояния молекулы, но их использование позволяет объяснять многие реакции.

Феноляты легко взаимодействуют с галогеналканами и галогенангидридами:

Взаимодействие солей фенола с галогеналканами – реакция О-алкилирования фенолов. Это способ получения простых эфиров (реакция Вильямсона, 1852 г.).

Фенол способен взаимодействовать с галогенангидридами и ангидридами кислот с получением сложных эфиров (О-ацилирование):

Реакция протекает в присутствии небольших количеств минеральной кислоты или при нагревании.

    Реакции по бензольному кольцу

Гидроксил является электронодонорной группой и активирует орто - и пара -положения в реакциях электрофильного замещения:

Галогенирование

Галогенирование фенолов действием галогенов или галогенирующих агентов протекает с большой скоростью:

Нитрование

При действии азотной кислоты в уксусной кислоте (в присутствии небольшого количества серной кислоты) на фенол получается 2-нитрофенол:

Под действием концентрированной азотной кислоты или нитрующей смеси фенол интенсивно окисляется, что приводит к глубокой деструкции его молекулы. При использовании разбавленной азотной кислоты нитрование сопровождается сильным осмолением несмотря на охлаждение до 0°С и приводит к образованию о- и п- изомеров с преобладанием первого из них:

При нитровании фенола тетраоксидом диазота в инертном растворителе (бензол, дихлорэтан) образуется 2,4-динитрофенол:

Нитрование последнего нитрующей смесью протекает легко и может служить методом синтеза пикриновой кислоты:

Эта реакция идет с саморазогреванием.

Пикриновую кислоту получают также через стадию сульфирования. Для этого обрабатывают фенол при 100°С избыточным количеством серной кислоты, получают 2,4-дисульфопроизводное, которое не выделяя из реакционной меси обрабатывают дымящей азотной кислотой:

Введение двух сульфогрупп (также как и нитрогрупп) в бензольное ядро делает его устойчивым к окисляющему действию дымящей азотной кислоты, реакция не сопровождается осмолением. Такой метод получения пикриновой кислоты удобен для производства в промышленном масштабе.

Сульфирование . Сульфирование фенола в зависимости от температуры протекает в орто - или пара -положение:

Алкилирование и ацилирование по Фриделю-Крафтсу . Фенолы образуют с хлористым алюминием неактивные соли ArOAlCl 2 , поэтому для алкилирования фенолов в качестве катализаторов применяют протонные кислоты (H 2 SO 4) или металлооксидные катализаторы кислотного типа (Al 2 O 3). Это позволяет использовать в качестве алкилирующих агентов только спирты и алкены:

Алкилирование протекает последовательно с образованием моно-, ди- и триалкилфенолов. Одновременно происходит кислотно-катализируемая перегруппировка с миграцией алкильных групп:

Конденсация с альдегидами и кетонами . При действии щелочных или кислотных катализаторов на смесь фенола и альдегида жирного ряда происходит конденсация в о - и п -положениях. Эта реакция имеет очень большое практическое значение, так как лежит в основе получения важных пластических масс и лаковых основ. При обычной температуре рост молекулы за счет конденсации идет в линейном направлении:

Если реакцию проводить при нагревании, начинается конденсация с образованием разветвленных молекул:

В результате присоединения по всем доступным о - и п -положениям образуется трехмерный термореактивный полимер – бакелит. Бакелит отличается высоким электрическим сопротивлением и термостойкостью. Это один из первых промышленных полимеров.

Реакция фенола с ацетоном в присутствии минеральной кислоты приводит к получению бисфенола:

Последний используют для получения эпоксисоединений.

Реакция Кольбе – Шмидта. Синтез фенилкарбоновых кислот.

Феноляты натрия и калия реагируют с углекислым газом, образуя в зависимости от температуры орто- или пара-изомеры фенилкарбоновых кислот:

Окисление

Фенол легко окисляется под действием хромовой кислоты до п -бензохинона:

Восстановление

Восстановление фенола в циклогексанон используют для получения полиамида (найлон-6,6)

По числу гидроксильных групп:

Одноатомные; например:

Двухатомные; например:



Трехатомные; например:



Существуют фенолы и большей атомности.

Простейшие одноатомные фенолы


С 6 Н 5 ОН - фенол (гидроксибензол), тривиальное название - карболовая кислота.



Простейшие двухатомные фенолы


Электронное строение молекулы фенола. Взаимное влияние атомов в молекуле

Гидроксильная группа -ОН (как и алкильные радикалы) является заместителем 1 рода, т. е. электронодонором. Это обусловлено тем, что одна из неподеленных электронных пар гидроксильного атома кислорода вступает в р, π-сопряжение с π-системой бензольного ядра.



Результатом этого является:


Повышение электронной плотности на атомах углерода в орто- и пара- положениях бензольного ядра, что облегчает замещение атомов водорода в этих положениях;


Увеличение полярности связи О-Н, приводящее к усилению кислотных свойств фенолов по сравнению со спиртами.


В отличие от спиртов, фенолы частично диссоциируют в водных растворах на ионы:



т. е. проявляют слабокислотные свойства.

Физические свойства

Простейшие фенолы при обычных условиях представляют собой низкоплавкие бесцветные кристаллические вещества с характерным запахом. Фенолы малорастворимы в воде, но хорошо растворяются в органических растворителях. Являются токсичными веществами, вызывают ожоги кожи.

Химические свойства

I. Реакции с участием гидроксильной группы (кислотные свойства)


(реакция нейтрализации, отличие от спиртов)



Фенол - очень слабая кислота, поэтому феноляты разлагаются не только сильными кислотами, но даже такой слабой кислотой, как угольная:



II. Реакции с участием гидроксильной группы (образование сложных и простых эфиров)

Как и спирты, фенолы могут образовывать простые и сложные эфиры.


Сложные эфиры образуются при взаимодействии фенола с ангидридами или хпорангидридами карбоновых кислот (прямая этерификация карбоновыми кислотами протекает труднее):



Простые эфиры (алкилариловые) образуются при взаимодействии фенолятов с алкилгалогенидами:



III. Реакции замещения с участием бензольного ядра


Образование белого осадка трибромфенола иногда рассматривается как качественная реакция на фенол.



IV. Реакции присоединения (гидрирование)


V. Качественная реакция с хлоридом железа (III)

Одноатомные фенолы + FeCl 3 (р-р) → Сине-фиолетовая окраска, исчезающая при подкислении.

Фенол С 6 Н 5 ОН – бесцветное, кристаллическое вещество с характерным запахом. Его t плавления = 40,9 С. В холодной воде он мало растворим, но уже при 70◦С растворяется в любых отношениях. Фенол ядовит. В феноле гидроксильная группа соединена с бензольным кольцом.

Химические свойства

1. Взаимодействие с щелочными металллами.

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2

фенолят натрия

2. Взаимодействие со щелочью (фенол – слабая кислота)

C 6 H 5 OH + NaOH → C 6 H 5 ONa + H2O

3. Галогенирование .

4. Нитрование

5.Качественная реакция на фенол

3C 6 H 5 OH +FeCl 3 → (C 6 H 5 O) 3 Fe +3HCl (фиолетовое окрашивание)

Применение

Для дезинфекции, получение лекарств, красителей, взрывчатых веществ, пластмасс.

Получение спиртов из предельных и непредельных углеводородов. Промышленный способ получения метанола.

Наибольшее промышленное значение имеют метанол и этанол.

Промышленный синтез метанола.

Метанол применяется в производстве ряда органических веществ (формальдегида, лекарств), используется как растворитель лаков и красок, служит добавкой к топливам. В настоящее время метанол получают экономически выгодным способом из синтез-газа:

1.Синтез-газ получают взаимодействием метана (природного газа) с водяным паром в присутствии катализатора:

СН 4 +Н 2 О → СО+3Н 2

синтез-газ

2.Из синтез-газа получают метанол:

СО + 2Н 2 СН 3 ОН +Q

1моль 2моль 1 моль

Эта реакция обратимая, экзотермическая, чтобы сместить равновесие в сторону образования метанола, нужно воспользоваться принципом Ле-Шателье:

1.Реакция сопровождается уменьшением объёма, поэтому повышение давления будет способствовать образованию метанола.

2.Реакция экзотермическая, следовательно, особенно сильно нагревать вещества нельзя.

Из-за обратимости процесса исходные вещества реагируют не полностью. Поэтому образовавшийся спирт необходимо отделять, а непрореагировавшие газы снова направлять в реактор, то есть осуществлять циркуляцию газов .

Получение спиртов из предельных и непредельных углеводородов.

1. Этанол в промышленности получают гидратацией этилена:

СН 2 =СН 2 + Н 2 О → СН 3 -СН 2 -ОН

2. Из предельных углеводородов спирты получают через галогенопроизводные. Первая реакция – галогенирование алкана:

С 2 Н 6 + Br 2 → C 2 H 5 Br + HBr

бромэтан

Вторая реакция- взаимодействие бромэтана с водным раствором щёлочи:

C 2 H 5 Br + НОНC 2 H 5 ОН + НBr

Щёлочь нужна, чтобы нейтрализовать НBr.

Промышленного значения такой способ не имеет, им пользуются в лабораториях. Но он важен в теоретическом отношении, так как показывает взаимосвязь между предельными углеводородами, их галогенопроизводными и спиртами.

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

Молекулярная формула: C 6 H 5 – OH.

Строение молекулы: в молекуле фенола гидроксильная группа атомов связана с бензольным кольцом (ядром).

Ароматический радикал фенил (C 6 H 5 –) или бензольное ядро, в отличие от радикалов предельных углеводородов обладает свойством оттягивать к себе электроны кислородного атома гидроксильной группы, поэтому в молекуле фенола химическая связь между атомами кислорода и водорода становится более полярной, а атом водорода – более подвижным, чем в молекулах спиртов, и фенол проявляет свойства слабой кислоты (его называют карболовой кислотой).

С другой стороны, гидроксильная группа влияет на бензольное кольцо (ядро) так, что в нем происходит перераспределение электронной плотности и атомы водорода в положениях 2,4,6 становятся более подвижными, чем в молекуле бензола. Поэтому в реакциях замещения для фенола характерно замещение трех атомов водорода в положениях 2,4,6 (в бензоле замещается только один атом водорода). Таким образом, в молекуле фенола наблюдается взаимное влияние гидроксильной группы и бензольного кольца друг на друга.

Физические свойства: фенол – бесцветное кристаллическое вещество с характерным запахом, на воздухе бывает розового цвета, т.к. окисляется. Температура плавления – 42 ºC.

Фенол – ядовитое вещество! При попадании на кожу вызывает ожоги!

Химические свойства: хим. свойства обусловлены гидроксильной группой и бензольным кольцом (ядром).

· Реакции, идущие по гидроксильной группе:

Атом водорода в гидроксильной группе фенола более подвижен, чем в спиртах, поэтому фенол проявляет св-ва слабой кислоты (второе название – карболовая кислота) и взаимодействует не только с активными металлами, как спирты,но также со щелочами (спирты со щелочами не реагируют!).

2C 6 H 5 OH + 2Na → 2C 6 H 5 ONa + H 2 . C 6 H 5 OH + NaOH → C 6 H 5 ONa + H 2 O

фенол гидроксид натрия фенолят натрия

· Реакции, идущие по бензольному кольцу (ядру):

Фенол энергично (без нагревания и катализаторов) взаимодействует с бромом и азотной кислотой, при этом в бензольном кольце замещаются три атома водорода в положениях 2,4,6.



фенол бром 2,4,6 – трибромфенол бромоводород

фенол азотная кислота 2,4,6-тринитрофенол

Применение: Фенол используется для производства лекарственных веществ, красителей, веществ для дезинфекции (антисептиков), пластмасс (фенопластов), взрывчатых веществ

Получение: из каменноугольной смолы и из бензола.

Альдегиды, их строение и свойства. Получение, применение муравьиного и уксусного альдегидов.

Альдегиды – органические вещества, содержащие функциональную альдегидную группу

Связанную с углеводородным радикалом или атомом водорода.

Общая формула альдегидов: или R – CОН

Строение молекул. В молекуле альдегида между атомами углерода и водорода существуют σ-связи, а между атомами углерода и кислорода – одна σ-связь и одна π-связь. Электронная плотность смещена от атома углерода к более электроотрицательному атому – атому кислорода. Т.о. атом углерода альдегидной группы приобретает частичный положительный (δ+), а атом кислорода – частичный отрицательный заряд (δ–).

Номенклатура . Названия альдегидам даются: 1) от исторических названий соответствующих органических кислот, в которые они превращаются при окислении – муравьиный альдегид, уксусный альдегид и т.д. 2) по международной номенклатуре – от названий соответствующих углеводородов + суффикс -аль . Например,

H – C или Н – СНО муравьиный альдегид, или метаналь

СH 3 – C или СН 3 – СНО уксусный альдегид, или этаналь

Физические свойства. Метаналь – бесцветный газ с резким запахом, этаналь и следующие адьдегиды – жидкости, высшие альдегиды – твердые вещества.

Химические свойства.

Реакции окисления. Качественные реакции на альдегиды:

1) реакция «серебряного зеркала» – окисление альдегидов аммиачным раствором оксида серебра при нагревании:

CH 3 – C НО + Ag 2 O → CH 3 – CООН + 2Ag ↓

Уксусный альдегид уксусная кислота

окислитель оксид серебра восстановливается до серебра, которое оседает на стенках пробирки, а альдегид окисляется в соответствующую кислоту

2) Окисление альдегидов гидроксидом меди (II) при нагревании.

H – C НО + 2 Cu(OH) 2 → H – CООН + 2CuOH + H 2 O

голубой желтый

муравьиный альдегид муравьиная кислота

2CuOH → Cu 2 O + H 2 O

желтый красный

окислителем является медь со степенью окисления +2, которая восстанавливается до меди со степенью окисления +1.

Реакции присоединения.

3) Альдегиды при нагревании и в присутствии катализатора присоединяют водород за счет разрыва двойной связи в альдегидной группе. При этом альдегид восстанавливается – превращается в соответствующий спирт. Например, метаналь превращается в метанол:

H– C НО + H 2 → CH 3 – OH

метаналь метиловый спирт (метанол)

Получение.

Альдегиды можно получить:

1. Окислением первичных спиртов, например,

2CH 3 OH + O 2 → 2H – C НО + 2H 2 O

метиловый спирт муравьиный альдегид (метаналь).

2. метаналь можно также получить непосредственным окислением метана:

CH 4 + O 2 → H – CНО + H 2 O

3. Уксусный альдегид можно получить гидратацией этилена в присутствии катализатора (солей ртути) – реакция М.Г. Кучерова:

H – C ≡ C – H + H 2 O → CH 3 – CНО

Применение. Наибольшее применение имеют метаналь и этаналь.

· Метаналь используется для получения фенолформальдегидной смолы, из которой делают пластмассы - фенопласты.

· При растворении этой смолы в ацетоне или спирте получают различные лаки.

· Метаналь используется для производства некоторых лекарственных веществ и красителей.

· Широко используется 40%-ный водный раствор метаналя – формалин. Он применяется при дублении кож (свертывает белок – кожа твердеет и не поддается гниению), для сохранения биологических препаратов, для дезинфекции и протравления семян.

· Этаналь в основном используется для производства уксусной кислоты.