Рекомендации по противообледенительной обработке воздушных судов. Путешествия и самолёты

Многие авиапассажиры особенно те, которым достались места с видом на крыло самолета, зимой очень часто могут наблюдать интересную процедуру. Пассажиры называют ее по разному: покрытие, опрыскивание, распыление, опыление, обрызгивание (лично слышал:) как люди говорили так) самолета противообледенительной жидкостью. В этом посте я постараюсь Вам рассказать об очень важной и ответственной процедуре, которая входит в свод правил авиационной безопасности — а именно противообледенительной обработке самолётов.

В один из прекрасных весенних дней, на примере самолета Ан-24 авиакомпании Ираэро я запечатлел этот процесс от начала и до конца, а теперь давайте раскроем понятие, что же какое противообледенительная обработка - это обработка поверхностей воздушного судна (в простонародье самолета) на земле перед полётом с целью удаления замёрзших осадков и предотвращения их появления на критических поверхностях самолета до взлёта. На официальном языке ICAO, а это английский язык - deicing (деайсинг).

Обработка может включать в себя несколько этапов, на снимке ниже Вы видите механическое удаление льда и снега которое можно производить с помощью щёток, резиновых скребков и мётел. Этот способ наиболее трудоёмок и к тому же он занимает значительное время и потому малоприменим в условиях интенсивного использования авиатехники, а еще если самолет большой.

Для чего вообще производить эту операцию? Так вот необходимость очистить от льда и снега поверхность самолёта обусловлена значительным влиянием замёрзших осадков на аэродинамические свойства поверхностей. Находящиеся на верхней поверхности крыла самолёта снег, иней и лёд снижают критический угол атаки, увеличивают скорость сваливания и превращают обтекающий поток из ламинарного в турбулентный. Мы же все с Вами помним, что турбулентность это не есть хорошо.

В случае расположения двигателей сзади крыла, на хвосте, массовый вброс снега и льда во входные устройства авиадвигателей при взлёте может привести к помпажу и самовыключению двигателей. Известны случаи авиакатастроф по этой причине. Так же лед оторванный с крыла самолета может повредить передние кромки хвостового оперения.

Подведем итог: лед и снег на самолете влияет на его подъемную силу и управляемость при взлете и наборе высоты, избежать этого можно только обработкой поверхностей самолета противообледенительной жидкостью.

Следующий метод противообледенительной обработки это физико-химический метод. В случае с нашим самолетом применят именно его. Эта обработка производится с применением спецмашин, имеющих баки для содержания и подогрева противообледенительной жидкости и устройства для ее нанесения с регулировкой степени распыла: сплошной струёй или конусом.

Машины бывают разные, в нашем случае машина имеет закрытую кабину с создаваемым комфортным микроклиматом и дистанционным управлением органами распыла противообледенительной жидкости, и это не спроста в аэропорту Магадана зимой столбик термометра может опускаться до - 45 градусов по Цельсию.

При отсутствии осадков (снега, дождя) как в нашем случае проводится только удаление обледенения нагретой примерно до +60..+70 градусов по Цельсию противообледенительной жидкостью (ПОЖ). За счёт температуры ПОЖ растапливает снег и лед на поверхностях самолета и далее получившаяся влага смывается струёй жидкости. Если идет снег или дождь самолет после первого этапа обработки покрывается тонким слоем другой ПОЖ (вяжущей), которая обеспечивает более долговременную защиту. Время защитного действия зависит от типа ПОЖ и погодных условий и может составлять от нескольких минут до 45 минут. Плёнка ПОЖ защищает поверхность самолета на время руления к ВПП и разбега, а затем сдувается встречным потоком воздуха при скорости примерно 150 км/час.

Решение, о проведении противообледенительной обработки, после авиакатастрофы в Тюмени принимают совместно администрация аэропорта и командир экипажа самолета. Самое интересное, что если кто-то из двух сторон, считает что обработка необходима, а вторая несогласна, противообледенительная обработка проводится в обязательном порядке. В нашем случае член экипажа воздушного судна, наблюдает за противообледенительной обработкой.

Чтобы до конца раскрыть тему скажу, что есть еще один метод и называется от тепловой. Это когда обледенение удаляется с самолета нагревом его поверхностей, какими либо излучателями или помещением его в тёплый ангар. Но в связи с большой затратностью и недостаточной эффективностью этот способ очень редко используется.

Ну вот мы с вами и разобрали, что такое противообледенительная обработка самолёта, теперь можно сидя в кресле самолета спокойно рассказывать соседям, что это за процедура и зачем она нужна в авиации. А особо недовольным будет сразу понятно, что лучше опоздать на 15-20 минут с вылетом, ибо как говорит народная мудрость «тише едешь, дальше будешь».

P.S. Чета мудрость не в тему сказал или как? :)


Спасибо за организацию и проведение съемок ОАО «Аэропорт Магадан» и общественной организации FEST - Far East Spotting Team.

Статистика говорит о том, что процент погибших в результате авиакатастроф значительно ниже, чем в случаях с другими видами транспорта. Обледенение самолета — частая причина аварий, поэтому борьбе с ней уделяют повышенное внимание. При крушении поезда, судна или автоаварии у людей есть достаточно высокие шансы выжить. Падения же воздушных лайнеров, за редким исключением, приводят к гибели всех пассажиров.

К чему приводит обледенение

Чаще всего обледенению подвергаются следующие части корпуса самолета:

  • хвостовое оперение и передние кромки крыльев;
  • воздухозаборники двигателей;
  • лопасти винтов у соответствующих типов двигателей.

Образование льда на крыльях и хвосте приводит к увеличению сопротивления, ухудшению устойчивости и управляемости воздушного судна. В самых худших случаях органы управления (элероны, закрылки и т. д.) могут просто примерзнуть к крылу, и управление самолетом будет частично или полностью парализовано.

Обледенение воздухозаборников нарушает равномерность входящих в двигатели. Следствие этого — неравномерная работа моторов и ухудшение тяги, сбои в работе агрегатов. Появляются вибрации, которые могут привести к полному разрушению двигателей.

У самолетов с винто-вентиляторными и турбовинтовыми двигателями обледенение кромок лопастей винтов вызывают серьезное уменьшение скорости полета из-за падения коэффициента полезного действия винтов. В результате судно может «не дотянуть» до места назначения, т. к. расход топлива при меньшей скорости остается прежним или даже возрастает.

Наземное обледенение самолета

Обледенение бывает наземным или происходит в полете. В первом случае условия обледенения самолета следующие:

  • В ясную погоду при отрицательных температурах поверхность самолета охлаждается сильнее, чем окружающая атмосфера. Из-за этого содержащиеся в воздухе водяные пары превращаются в лед — возникает иней или изморозь. Толщина налета обычно не превышает нескольких миллиметров. Он легко удаляется даже вручную.
  • При околонулевых температурах и высокой влажности переохлажденная вода, содержащаяся в атмосфере, оседает на кузове самолета в виде налета. В зависимости от конкретных погодных условий налет бывает различным — от прозрачного при более высоких температурах до матового, похожего на иней, при более низких.
  • Замерзание на поверхности самолета тумана, дождя или мокрого снега. Образуется не только в результате атмосферных осадков, но и при попадании на корпус снега и слякоти с земли при рулении.

Существует также такая разновидность явления, как «топливный лед». Когда керосин в баках имеет более низкую температуру, чем окружающий воздух, в районе расположения баков начинается оседание атмосферной воды и образование наледи. Толщина слоя иногда достигает 15 мм и более. Этот вид обледенения самолета опасен тем, что осадок чаще всего бывает прозрачным, его трудно заметить. К тому же осадок образуется только в зоне топливных баков, при этом остальная часть кузова самолета остается чистой.

Обледенение в воздухе

Другой вид обледенения самолета — образование льда на корпусе судна непосредственно во время полета. Происходит при полете в условиях холодного дождя, мороси, мокрого снега или тумана. Лед образуется чаще всего на крыльях, хвостовом оперении, двигателях и других выступающих частях кузова.

Скорость образования ледяной корки бывает различной и зависит как от погодных условий, так и от конструкции самолета. Отмечены случаи образования налета со скоростью 25 мм в минуту. Скорость движения воздушного судна здесь играет двоякую роль — до определенного порога она способствует усилению обледенения самолета из-за того, что за единицу времени на поверхность самолета попадает большее количество влаги. Но затем при дальнейшем ускорении поверхность разогревается от трения о воздух, и интенсивность образования льда снижается.

Обледенение самолета в полете происходит чаще всего на высотах до 5 000 метров. Поэтому заранее предельное внимание уделяется изучению погодных условий в районе взлета и посадки. Обледенение на больших высотах встречается крайне редко, но все же возможно.

Борьба с обледенением с помощью ПОЖ

Главную роль в предотвращении наледи играет обработка самолетов противообледенительной жидкостью (ПОЖ). Лидеры в производстве антиобледенительных средств — американская The Dow Chemical Company и канадская Cryotech Deicing Technology. Компании постоянно расширяют и совершенствуют линейку своих реагентов.

Приоритетными направлениями исследований являются скорость удаления льда и длительность защиты самолета от обледенения. За эти процессы отвечают разные типы поэтому обработка самолета всегда проводится в два этапа. Всего существует четыре типа реагентов, которые применяются при обработке воздушного судна. Жидкости первого типа отвечают за удаление имеющейся наледи с корпуса самолета. Составы II, III и IV типов служат для защиты кузова от обледенения в течение определенного времени.

Обработка самолета на земле

Сначала самолет обрабатывают жидкостью типа I, разбавленной горячей водой до температуры 60-80 0 С. Концентрацию реагента выбирают, исходя из погодных условий. В состав часто включают краситель, чтобы обслуживающий персонал мог контролировать равномерность покрытия самолета жидкостью. Кроме того, специальные вещества, входящие в состав ПОЖ, улучшают покрытие поверхности средством.

Вторым этапом идет обработка следующей жидкостью, чаще всего типа IV. Она в целом идентична составу типа II, но производится по более современной технологии. Тип III чаще всего используют для обработки от обледенения самолетов различных местных авиалиний. Жидкость IV типа распыляют в чистом виде и, в отличие от типа I, с низкой скоростью. Цель обработки — добиться, чтобы самолет был равномерно покрыт толстой пленкой состава, который не позволяет воде замерзать на поверхности самолета.

В процессе действия пленка постепенно "тает", реагируя с осадками. Производители ведут исследования, призванные увеличить время действия защитного слоя. Также изучаются возможности минимизации воздействия вредных компонентов противообледенительных жидкостей на окружающую среду. В целом же ПОЖ на данный момент остаются лучшим средством борьбы с обледенением самолетов.

Противообледенительные системы

Составы, которыми обрабатывают воздушные суда на земле, специально сделаны так, что при взлете они «сдуваются» с поверхности кузова, чтобы не уменьшать подъемную силу. Тогда эстафету принимают датчики обледенения самолета. Они в нужный момент подают команду вступить в действие системам, предотвращающим образование льда в процессе полета. Они делятся на механические, химические и термические (воздушно-тепловые и электротепловые).

Механические системы

Основаны на принципе искусственной деформации наружной поверхности корпуса судна, в результате чего лед раскалывается и сдувается встречным воздушным потоком. Например, на крыльях и оперении самолета укрепляются резиновые протекторы с системой воздушных камер внутри. После начала обледенения самолета сжатый воздух подается сначала в центральную камеру, которая раскалывает лед. Затем надуваются боковые отсеки и сбрасывают лед с поверхности.

Химические системы

Действие такой системы основано на использовании реагентов, которые в соединении с водой образуют смеси с низкой температурой замерзания. Поверхность нужного участка корпуса самолета покрывается специальным пористым материалом, через который и подается жидкость, растворяющая лед. Химические системы широко применялись на воздушных судах в середине XX века, однако сейчас их используют в основном как резервный способ очистки лобовых стекол.

Термические системы

В этих системах обледенение ликвидируется нагревом поверхности горячим воздухом и отработанными газами, забираемыми из двигателей, или электричеством. В последнем случае поверхность нагревается не постоянно, а периодически. Некоторому количеству льда позволяют намерзнуть, после чего включают систему. Замерзшая вода отделяется от поверхности, и ее уносит воздушный поток. Таким образом растаявший лед не растекается по корпусу самолета.

Самая современная разработка в этой сфере — электротепловая система, изобретенная компанией GKN. На крылья самолета наносится специальная полимерная пленка с добавлением жидкого металла. Она берет энергию от бортовой системы самолета и поддерживает температуру на поверхности крыла от 7 до 21 0 С. Эта новейшая система широко применяется на лайнерах Boeing 787.

Несмотря на все «навороченные» системы безопасности, обледенение требует предельного внимания со стороны человека. Маленькая невнимательность часто приводила к большим трагедиям. Поэтому, несмотря на стремительное развития техники, безопасность людей по-прежнему во многом зависит от них самих.

Заменят ли супергидрофобные жидкости «незамерзайку», что эффективнее с точки зрения экономики и ученых РАН и как защищают самолеты в российских аэропортах - в материале сайт.

Группа исследователей из Института физической химии и электрохимии РАН (ИФХЭ РАН) разработала серию так называемых супергидрофобных покрытий, использование которых может существенно повысить эффективность защиты металлических и пластмассовых конструкций от обледенения. По словам авторов разработки, покрытие позволит существенно сократить затраты на антиобледенительные жидкости. Также оно сохраняет защитные свойства в течение нескольких полетов, утверждают ученые.

Формирование и накопление льда нарушает работу и снижает эффективность кораблей, морских нефтяных платформ, ветровых турбин, плотин, электростанций, линий электропередач, телекоммуникационного оборудования и т. п. При этом ущерб, наносимый экономике при таких явлениях, как ледяной дождь и снежные бури, составляет десятки миллиардов рублей.

Авиакатастрофы

Обледенение летательных аппаратов в авиации приводит не только к экономическим потерям, но и к гибели десятков и сотен людей. В декабре 1971 года в нескольких километрах от аэропорта в Саратове упал самолет Ан-24. Лайнер заходил на посадку в сложных метеорологических условиях. Причиной катастрофы стало отключение антиобледенительной системы, повлекшее за собой обледенение самолета в облаках. Погибли 57 человек.

Осенью 1978 года тот же Ан-24 потерпел катастрофу и затонул в заливе Сиваш. Полет проходил ночью в облаках и в условиях обледенения. Погибли 26 человек.

В ноябре 1991 года из-за обледенения катастрофа произошла в аэропорту Бугульмы. Экипаж Ан-24 не включил противообледенительную систему. Крылья и стабилизаторы покрылись 1,5 сантиметрами льда. При попытке уйти на второй круг самолет рухнул на землю. 4 члена экипажа и 37 пассажиров погибли.

В апреле 2012 года под Тюменью потерпел крушение авиалайнер ATR 72. В результате катастрофы погибли 43 человека. Из заключения Межгосударственного авиационного комитета (МАК) следовало, что на поверхности самолета были снежно-ледяные отложения. Именно они привели к ухудшению аэродинамических характеристик самолета. Согласно заключению экспертов, проведение противообледенительной обработки позволило бы избежать катастрофы.

Фотография потерпевшего крушение авиалайнера ATR 72

Противообледенительные жидкости

После авиакатастрофы в Тюмени российские авиаперевозчики стали использовать «Концепцию чистого самолета» (clean aircraft concept). Концепция запрещает начинать полет, если на корпусе самолета присутствует иней, снег или лед. При этом однозначного и исчерпывающего перечня условий, при которых нужно проводить обработку, не существует.

«Общим правилом является запрет на взлет самолета, если на его критических поверхностях (крыло, киль, стабилизатор, фюзеляж, включая приемники полного и статического давления, датчики температуры и угла атаки, двигателях, шасси) присутствуют недопустимые производителем самолета снежно-ледяные отложения в виде снега, льда, инея или слякоти», - рассказали корреспонденту сайт в пресс-службе международного аэропорта «Домодедово».

Нужно ли проводить обработку и защиту от наземного обледенения, определяется в результате проверки до взлета самолета. Также учитывается наличие или возможное выпадение замерзающих осадков (снег, перехолажденный дождь, дождь, морозь, туман). При этом противообледенительная обработка может проводиться даже при плюсовой температуре на земле. «Ситуация может быть значительно сложнее, и, например, при больших остатках холодного топлива в баках крыла после предыдущего полета, обработка крыла может потребоваться даже при температуре воздуха +15 градусов», - уточнили в «Домодедово».

Сегодня существует четыре типа противообледенительных жидкостей (ПОЖ). Они представляют собой смесь воды и гликоля (класс органических соединений, содержащих две гидроксильные группы, - прим. сайт) с добавлением различных загустителей.

Тип I применяют для удаления льда. Для экономии его могут разбавлять водой, при этом он практически не защищает, поскольку в жидкости нет загустителей.

В состав типа II входят загустители, которые защищают от обледенения, но действуют в течение небольшого срока.

В тип III добавляют меньше загустителей. Он используется для турбовинтовых самолетов с низкой скоростью отрыва при взлете.

Тип IV имеет высокую концентрацию загустителей и длительный защитный эффект.

Жидкости окрашивают в разные цвета, чтобы их было проще отличать друг от друга. Тип I имеет красноватый оттенок, Тип II - жемчужный, Тип III и Тип IV - желтый и зеленый цвета соответственно.

Цены на жидкости устанавливает аэропорт. Например, в международном аэропорту в Казани противообледенительные жидкости стоят около 200 рублей за литр (в зависимости от типа и концентрации). Для обработки самолета A320 требуется 200-300 литров. Для авиалайнеров количество противообледенительной жидкости составляет около 2000 литров. «К следующему сезону аэропорту предстоит переход на новую, уже разработанную и сертифицированную жидкость четвертого типа на базе этиленгликоля и лучшими характеристиками как по времени защитного действия, так и по минимальной температуре применения. Сейчас ПОЖ такого типа изготавливается на основе пропиленгликоля, производство которого ограничено в России. Кроме того, жизненный цикл жидкости четвертого типа Clariant Max Flight 04 (применяется для противообледенительной обработки в аэропорту «Домодедово», - прим. сайт) , выпуск которой был начат в 2004 году, уже заканчивается», - рассказали сайт в пресс-службе аэропорта «Домодедово».

Супергидрофобные жидкости

Использование противообледенительных жидкостей экономически невыгодно, поскольку такие жидкости можно применять только один раз, считает доктор химических наук, заведующий кафедрой химической термодинамики и кинетики Санкт-Петербургского государственного университета Александр Тойкка. Альтернативой могут стать, например, гидрофобные и супергидрофобные покрытия.

Супергидрофобностью называют особое состояние поверхности, которая взаимодействует с водой в гетерогенном (неоднородном) режиме смачивания. Проще говоря, супергидрофобность - это такой режим, когда капля касается поверхности только в избранных точках. Она не проникает во впадины рельефов, а лишь опирается на вершины выступов, а в основной части нависает над поверхностью, и здесь между жидкостью и твердым материалом существует довольно толстая воздушная прослойка. Благодаря гетерогенному режиму смачивания супергидрофобные покрытия защищают материалы от коррозии, обеспечивают теплозащиту, могут также применяться для электроизоляции.

Разработка супергидрофобных поверхностей - достаточно популярное направление среди исследователей, так как сделать поверхность супергидрофобной можно только с помощью нанотехнологий, поскольку сама природа супергидрофобности требует многомодальной (мультимасштабной) шероховатости. А нанотехнологии - это место, куда в последние годы активно идут инвестиции.

Правда, у этой популярности есть и оборотная сторона: среди занимающихся супергидрофобностью ученых много таких, которые были просто неподготовлены к тем исследованиям, на которые сделали заявку. По словам руководителя исследования, академика РАН Людмилы Бойнович, главного научного сотрудника лаборатории поверхностных сил ИФХЭ РАН, многие зарубежные группы пришли в это направление, не особенно представляя себе тонкостей контакта водных сред с твердой поверхностью, и потому достигли очень скромного успеха. Получаемая ими супергидрофобность (или то, что они принимали за супергидрофобность) держалась считанные секунды, в лучшем случае минуты. И часто возникали проблемы со стойкостью этого режима: стоило прикоснуться к полученной поверхности пальцем, как супергидрофобность исчезала.

Группа Людмилы Бойнович подошла к этим исследованиям, что называется, во всеоружии. Академик Борис Дерягин (1902-1994), основавший лабораторию поверхностных сил, создал на ее основе научную школу, которая получила международное признание.

Несколько лет назад лаборатория, заведующим которой в настоящее время является доктор физико-математических наук Александр Емельяненко, занялась, помимо прочего, исследованиями супергидрофобности, финансируемыми в основном грантом Российского научного фонда и программами Президиума РАН. Ученые провели подробный теоретический анализ явления и разработали ряд способов получения супергидрофобных поверхностей. Одним из самых интересных и перспективных методов, предложенных лабораторией, является так называемое лазерное наносекундное текстурирование. Оно позволяет создать на поверхности тот самый нанорельеф, который обеспечивает на материалах из металла или пластика режим супергидрофобности, причем режим стойкий, выдерживающий не только касание пальцем, а многократные замораживания и размораживания, сопровождающиеся большими напряжениями в зоне контакта поверхности с водой. Работы ученых были опубликованы в журналах Physical Chemistry Chemical Physics, ACS Applied Materials and Interfaces и многих других.

Нам удалось показать, что даже при высокой влажности воздуха капли воды, сидящие на супергидрофобных поверхностях, длительное время находятся в переохлажденном состоянии без кристаллизации при низких температурах. Противообледенительные покрытия, получаемые нами методом наносекундного лазерного текстурирования, имеют высокую износостойкость и хорошо справляются со своей задачей даже при очень масштабных перепадах температур. Нам также удалось показать уникальные противокоррозионные свойства наших поверхностей. И, что, может быть, наиболее важно, мы показали, что нашим методом можно организовать процесс получения супергидрофобной поверхности таким образом, чтобы не только достичь гетерогенного режима смачивания, но и изменить фазовые состояния твердого материала, тем самым повлияв еще на целую гамму других функциональных свойств этой поверхности».

Стоит отметить, что способ лазерного текстурирования, примененный группой ИФХЭ РАН, основан на использовании коммерчески доступных наносекундных лазерных систем и относительно недорог. Он может быть применен при антиобледенительной обработке самолетных крыльев и заменяет обработку антиобледенительными жидкостями (хотя в крайних случаях, в особых форс-мажорных ситуациях, как утверждает Людмила Бойнович, только эффект супергидрофобности может оказаться недостаточным и должен быть дополнен другими стандартными для авиации методами). В отличие от одноразовой обработки антиобледенительными жидкостями, супергидрофобное покрытие работает в течение многих дней без участия человека и приведет к большому экономическому эффекту. «Ключевой вопрос применимости таких покрытий, - комментирует Людмила Бойнович, - связан с тем, насколько создаваемое супергидрофобное состояние долговечно. В последнее время лаборатории удается получать очень стойкие покрытия, которые выдерживают до ста циклов кристаллизации, а также длительные абразивные и кавитационные нагрузки».

Едва ли можно ожидать, что в ближайшем будущем супергидрофобные покрытия заменят традиционные противооблединительные жидкости, считает Александр Тойкка. Это связано со сложностями, с которыми сталкиваются ученые при внедрении своих разработок. «С внедрениями в нашей стране достаточно плохо. Значительно проще купить уже апробированную технологию на западе. Но это тупиковый путь, так как мы попадаем в зависимость. Почему мы сейчас так радуемся санкциям? Потому что у нас есть возможность развития собственных технологий. Разработка должна быть достаточно простой для технологического воплощения и защищена международными патентами. Но все зависит от доброй воли и сознательности производителя. За научно-исследовательской работой последует опытно-конструкторская работа (НИОКР), которая позволит на ограниченном числе образцов проверить жизнеспособность разработки», - отметил эксперт.

Исходя из анализа авиационных событий и в целях реализации мер, направленных на повышение безопасности и эффективности полетов, а также методического сопровождения эксплуатации самолетов в условиях наземного обледенения
рекомендую:

2. Генеральным директорам авиапредприятий организовать разработку Положения о защите воздушных судов от наземного обледенения, в соответствии с Рекомендациями.

Заместитель начальника Управления

поддержания летной годности воздушных судов

«Защита ВС от наземного обледенения»
1. Введение.

1.1. Общая информация.

1.1.1. Данные Рекомендации подготовлены по заданию Федеральной авиационной службы воздушного транспорта Минтранса РФ для оказания помощи авиационным предприятиям по организации и практическому проведению работ по защите ВС от наземного обледенения.

Руководств по эксплуатации ВС;

Сервисных бюллетеней производителей ВС;

Публикаций ведущих специалистов в данной области в России и за рубежом;
- руководств изготовителей ПОЖ по работе с ними.

При подготовке учтен опыт аэропортов и предприятий Европы и Российской Федерации в области организации и проведения противообледенительной защиты ВС, а также разработанные ими в своих предприятиях документы.
1.1.3. Настоящие Рекомендации по сложившейся международной практике являются документом, определяющим минимально-необходимые требования, которые предприятия Российской Федерации, вне зависимости от организационно-правовой формы, должны выполнять при организации и выполнении работ по противообледенительной защите ВС на земле.

1.1.4. Настоящие Рекомендации не отменяют ответственность производителей ВС, эксплуатантов ВС, аэропортов и предприятий, вовлеченных в процесс ПОЗ ВС, по разработке нормативной и организационной документации по непосредственному выполнению работ по ПОЗ ВС.
Настоящие Рекомендации должны стать основой и помощью авиационным предприятиям для разработки собственных Руководств, инструкций и других документов по защите ВС от наземного обледенения.

ПРЕДУПРЕЖДЕНИЕ:

а) Настоящее Рекомендации не устанавливает требований по противообледенительной защите конкретных типов ВС. В случае если какое-либо положение настоящего Руководства не соответствует требованиям эксплуатационно-технической документации (далее ЭТД) определенного типа ВС, следует руководствоваться требованиями ЭТД.

б) Применять настоящие Рекомендаций должен только специально подготовленный персонал, имеющий навыки использования общих принципов, заложенных в настоящем Руководстве, применительно к местным условиям без угрозы снижения уровня безопасности полетов.
1.1.5. Недопустимо использование отдельных положений или разделов настоящих Рекомендаций в отрыве от полного содержания документа. Все разделы данного документа взаимосвязаны и во многом дополняют друг друга.

1.1.6. В связи с постоянным развитием техники и технологий защиты ВС от наземного обледенения, положения Рекомендаций будет требовать периодических ревизий. Перед использованием убедитесь, что вы пользуетесь последней ревизией документа.

1.1.7. Разработчики настоящих Рекомендаций стремились, чтобы документ соответствовал, или, как минимум, не противоречил основным требованиям Российских и международных документов в области защиты ВС от наземного обледенения. В случае выявления неточностей, замечаний, расхождений с требованиями Российских и международных документов или появления предложений предлагается обращаться в Управление по поддержанию летной годности ВС ФАСВТ МТ РФ.

1.2. Документация, необходимая для обеспечения процесса ПОЗ ВС.

1.2.1. Для определения требований по обеспечению безопасности полетов при полетах в условиях наземного обледенения авиакомпании (эксплуатанты ВС) разрабатывают Руководство (Инструкцию или Технологию) по противообледенительной защите ВС (ПОЗ ВС). Руководства по ПОЗ ВС авиакомпаний должны содержать требования по противообледенительной защите всех эксплуатируемых типов ВС.
1.2.2. Для правильной организации процесса ПОЗ ВС на предприятии, выполняющем процедуры по ПОЗ ВС, должны быть разработаны следующие документы:

Руководство (инструкция или технология) по ПОЗ ВС;

Программы подготовки персонала, задействованного в процесс ПОЗ ВС.

1.2.3. Руководство и программы подготовки персонала разрабатываются на основе:

Нормативных документов Федеральных Органов Исполнительной Власти.

Руководств (Инструкций или Технологий) по ПОЗ ВС авиакомпаний;
- руководств по эксплуатации конкретных типов ВС;

Руководств (инструкций) производителя по применению противообледенительных жидкостей;

Инструкции по эксплуатации специального оборудования, используемого для ПОЗ ВС;

В руководстве также должны быть учтены особенности предприятия и аэропорта.

1.2.4. Руководство предприятия, выполняющего работы по ПОЗ ВС на земле, должно определять минимальные требования, предъявляемые к используемым ПОЖ и работе с ними, к технологиям ПОЗ ВС, спецтехнике, персоналу, задействованному в процессе ПОЗ ВС и системе его подготовки, а также взаимодействию служб (подразделений) предприятия, имеющим отношение к ПОЗ ВС.

1.2.5. Руководство предприятия, выполняющего работы по ПОЗ ВС на земле, должно отражать местные условия и особенности организации процессов ПОЗ ВС в конкретном аэропорту.

1.2.6. Предприятия, выполняющие процедуры по ПОЗ ВС, должны поддерживать в актуальном состоянии Руководства и программы подготовки персонала путем регулярного их переиздания, не реже 1 раза в год и/или внесением в него дополнений, в случае изменений в организации процесса ПОЗ ВС.

1.2.7. Перед началом сезона ПОЗ ВС или перед началом полетов в аэропорт в ОЗП, по сложившейся международной практике, авиакомпания предоставляет аэропорту или предприятию производящему работы по ПОЗ ВС свое Руководство (Инструкцию или Технологию) для ознакомления и согласования процедур выполнения ПОЗ конкретных типов воздушных судов.
1.2.8. Авиакомпаниям рекомендуется проводить аудиты и проверки предприятий, выполняющих работы по ПОЗ ВС, для обеспечения гарантии соблюдения требований по выполнению процедуры и требований по безопасности полетов.

1.2.9. Предприятия, выполняющие процедуры по ПОЗ ВС, должны прилагать необходимые усилия для устранения, обнаруженных в процессе аудитов, замечаний, несоответствий и рекомендаций.

1.3 Концепция чистого воздушного судна.
1.3.1 В основу настоящих Рекомендаций заложена «Концепция чистого воздушного судна», подробно изложенная в Главе 2 Doc 9640-AN/940 ICAO.

1.3.2 В соответствии с требованиями п. 2.14 Федеральных авиационных правил "Подготовка и выполнение полетов в гражданской авиации Российской Федерации", утвержденных Минтранса РФ от 31 июля 2009 г. N 128:

ЗАПРЕЩАЕТСЯ НАЧИНАТЬ ПОЛЕТ, ЕСЛИ ПРИСУТСТВУЮТ ИНЕЙ, МОКРЫЙ СНЕГ ИЛИ ЛЕД НА ПОВЕРХНОСТЯХ КРЫЛЬЕВ, ФЮЗЕЛЯЖА, ОРГАНОВ УПРАВЛЕНИЯ, ОПЕРЕНИЯ, ВОЗДУШНЫХ ВИНТОВ, ЛОБОВОГО СТЕКЛА, СИЛОВОЙ УСТАНОВКИ ИЛИ НА ПРИЕМНИКАХ ВОЗДУШНОГО ДАВЛЕНИЯ БАРОМЕТРИЧЕСКИХ ПРИБОРОВ ВОЗДУШНОГО СУДНА, ЕСЛИ ИНОЕ НЕ ПРЕДУСМОТРЕНО.

1.3.3 Снежно-ледяные отложения (СЛО), находящиеся на поверхностях и элементах ВС, могут значительно ухудшить аэродинамические характеристики самолета (уменьшить подъемную силу и увеличить лобовое сопротивление), устойчивость, полностью или частично блокировать подвижность элементов управления. СЛО могут блокировать или искажать сигналы, поступающие от датчиков угла атаки, приемников динамического и статического давления. В результате может сложиться ситуация опасная для обеспечения безопасности полета.

1.3.4 СЛО, которые могут ухудшить летные характеристики ВС и (или) повлиять на его управляемость, должны быть удалены с использованием противообледенительных процедур, указанных в данном руководстве.

1.3.5 Настоящие Рекомендации содержат только необходимые минимальные требования, предъявляемые к процедурам ПОО ВС. Проверки ВС на наличие обледенения, в том числе на наличие прозрачного льда, а также проверка после проведения ПОЗ, должны производиться специально подготовленным и сертифицированным персоналом в соответствии с ЭТД ВС.

1. Федеральные авиационные правила "Подготовка и Выполнение Полетов в Гражданской Авиации Российской Федерации" Министерство Транспорта Российской Федерации ПРИКАЗ от 31 июля 2009 г. N 128.

2. «Recommendations for De-Icing / Anti-Icing of Airplanes on the Ground» 27 edition July 2012 AEA. (http:// www.aea.be)
3. «Training Recommendations and Background Information for De-Icing / Anti-Icing of Airplane on the Ground» 9th Edition August 2012 AEA. (http:// www.aea.be)
4. «Методические Рекомендации по противообледенительной защите воздушных судов на земле» Департамент поддержания летной годности ВС Минтранса России 23.01.2003 № 24.9-16

5. ICAO DOC 9640-AN/940 «Руководство по противообледенительной защите воздушных судов на земле». Издание второе - 2000.

6. JAR - OPS 1 Commercial Air Transportation (Airplanes), second issue;

7. ISO 11075:2007/SAE AMS 1424K «Deicing/Anti-Icing Fluid, Aircraft. SAE Type 1.

8. ISO 11076:2006/SAE ARP 4737H“Aircraft Deicing/Anti-icing Methods”

9. ISO 11078:2007 / SAE AMS 1428G “Fluid, Aircraft Deicing/Anti-icing, Non-Newtonian (Pseudo plastic), SAE Types ЙI, III and IV.

10. SAE ARP 5149A “Training Program Guidelines for Deicing/Anti-icing of Aircraft on the Ground”

11. SAE ARP 5660A “Deicing facility operational procedures”

12. SAE ARP 5646 Quality Program Guidelines for Deicing/Anti-icing of Aircraft on the Ground

13. SAE AS 5635 Message Boards (Deicing Facilities)

14. «Руководство по Защите ВС от Наземного Обледенения Аэропорта «Домодедово» Аэропорт Домодедово издание 8 Октябрь 2012.

15. «Руководство по Противообледенительной Защите Воздушных Судов ОАО «Аэрофлот» 2012г.

16. "Руководство по Защите Воздушных Судов от Наземного Обледенения" ОАО "АК "Трансаэро". 2012г.

17. "Руководство по Защите Самолета от Наземного Обледенения" ОАО "Авиакомпания Сибирь" 2012г.

18. О.К. Трунов «Безопасность взлета в условиях обледенения» АСЦ ГосНИИГА 1995г.

20. Письмо ФСНТ 8.10-1283 от 28.09.2006 «Методические рекомендации по расследованию авиационных событий, связанных с обледенением воздушных судов».

21. EASA Safety Information Notice 2006-09 «Ground De-/ Anti-Icing of Aeroplanes; Intake / Fan blade Icing and effects of fluid residues on flight controls»

22. Joel Hille «Deicing and Anti-icing Fluid Residues». Boeing Service Engineering, AERO Q107

23. Boeing Service Letter 373_SL-12-019-A August 28, 2007
3. Обязанности и ответственность.
Работы по ПОЗ ВС должны осуществляться персоналом, прошедшим специальную подготовку по защите ВС от наземного обледенения и допущенным к выполнению данного вида работ по ПОЗ ВС.

3.1 На каждом предприятии, исходя из местных условий, должно быть выполнено распределение обязанностей и ответственности персонала:

Задействованного в непосредственном проведении работ по противообледенительной обработке ВС;

Выполняющего проверку на наличие СЛО на ВС, с целью определения необходимости проведения ПОЗ ВС, и проверку чистоты поверхностей ВС и качества обработки после проведения ПОЗ ВС;

Выполняющего контроль качества ПОЖ и обеспечивающего хранение записей о проверках;

Выполняющего полет и принимающего решение на взлет ВС;

Управляющего процессами ПОЗ ВС;
- организующего обучение персонала; хранящего записи об обучении и сертификации персонала, и допускающего персонал к выполнению работ.

3.2. Персонал, выполняющий ПОЗ ВС, несет ответственность за:

Соблюдение технологии проведения ПОЗ ВС в соответствии с выбранной процедурой в полном объеме и с обеспечением необходимого качества;

Концентрацию и температуру ПОЖ, применяемую для обработки;

Чистоту обработанных поверхностей ВС после проведение процедур по удалению СЛО;

Безопасное выполнение всех операций при выполнении ПОЗ ВС;

Соблюдение техники безопасности при эксплуатации оборудования, спецмашин, исключающее повреждение ВС, спецмашин, оборудования и причинение вреда людям;
- полноту и правильность передачи информации ответственному за выпуск ВС,
- своевременное и правильное оформление документации.

ПРИМЕЧАНИЕ: Если обязанность по выполнению проверки качества противообледенительной обработки возложена на оператора деайсера, он несет ответственность за полноту и качество её проведения, и запись кодa антиобледенительной обработки.

3.3 Водитель спецмашины, задействованной в выполнении ПОЗ ВС, несет ответственность за:

Своевременный подъезд к ВС;

Выполнение требований к маневрированию вблизи ВС;

Безопасное выполнение всех операций по ПОЗ ВС;

Соблюдение техники безопасности при обработке ВС, исключающее повреждение ВС, спецмашин, оборудования и причинение вреда людям;

Выполнение указаний и требований оператора деайсера во время противообледенительной обработки ВС;

Прием и передачу информации между оператором деайсера, диспетчером, ответственным за выпуск ВС; передачу подтверждающей документации о выполненной обработке персоналу, выпускающему ВС.
ПРИМЕЧАНИЕ: Современные деайсеры могут иметь систему, позволяющую осуществлять управление движением машины при проведении ПОЗ из кабины оператора, т.е. одним сотрудником.

3.4 Ответственный за выпуск ВС, несёт ответственность за:

Выполнение проверки на наличие СЛО на поверхностях ВС;

Правильность определения метода ПОЗ ВС;

Достоверность доклада КВС по результатам проверки на наличие СЛО;

Полноту указаний лицу, проводящему ПОЗ ВС;

Правильность принятия решения об отказе от ПОЗ;

Выполнение проверки после проведения удаления обледенения и антиобледенительной защиты ВС;

Передачу КВС кода антиобледенительной защиты ВС.

Противообледенительная обработка - обработка поверхностей воздушного судна (ВС) на земле перед полётом с целью удаления замёрзших осадков и предотвращения их появления на критических поверхностях ВС до взлёта. Появление замёрзших осадков на поверхностях также называется наземным обледенением .

Важность противообледенительной обработки

Необходимость в противообледенительной обработке обусловлена значительным влиянием замёрзших осадков на аэродинамические свойства поверхностей.

В частности, находящиеся на верхней поверхности крыла самолёта снег, иней и лёд снижают критический угол атаки, увеличивают скорость сваливания и превращают обтекающий поток из ламинарного в турбулентный .

В случае расположения двигателей сзади крыла, на хвосте, массовый вброс снега и льда во входные устройства авиадвигателей при взлёте может привести к помпажу и самовыключению двигателей. Известно несколько случаев авиакатастроф по этой причине.

Менее опасными последствиями являются повреждения передней кромки хвостового оперения слетающими с крыла кусочками льда. Однако образующиеся при этом вмятины вынуждают проводить периодические осмотры повреждений в эксплуатации; а также ремонты, что удорожает техническое обслуживание ВС.

Концепция «Чистого самолёта»

Она предусматривает, что перед полётом критические поверхности ВС должны быть свободными от всех видов отложений. Это относится к крылу, горизонтальному и вертикальному оперению.

Виды наземного обледенения

Иней

Иней - это конденсирующиеся и замерзающие на переохлаждённой поверхности водяные пары.
Как правило, это единственный вид обледенения, допускаемый на крыле. Согласно документам Airbus и Boeing , допускается тонкий слой инея (до 3 мм толщиной) на нижней поверхности крыла в районе топливных баков.

Снег

Снег , выпадающий на поверхности ВС, может быть сухим или влажным. Влажный снег может примерзать или прилипать к поверхности и поэтому его удаление более трудоёмко и материалоёмко.
Наличие снега, как правило, допускается на поверхности фюзеляжа ВС в небольших количествах.

Переохлаждённый дождь

Это дождь, капли которого имеют отрицательную температуру, но ещё не замерзают в воздухе. При попадании таких капель на поверхность они сразу замерзают, образуя ледяную корку.

Шуга

Шуга - это смесь воды с мелким льдом или снегом.

Лёд

Лёд с точки зрения его удаления наиболее «неудобен», так как он, как правило, хорошо удерживается на поверхности за счёт примерзания и сравнительно устойчивее к механическим воздействиям, нежели остальные виды обледенения.

«Топливный лёд»

«Топливный лёд» - это разновидность льда, образующаяся обычно при положительной температуре воздуха на поверхности ВС в районе расположения топливных баков (чаще всего находящихся внутри крыльев самолётов). Причина его появления заключается в сильном охлаждении топлива, находящегося во время полёта в сравнительно тонких крыльевых баках. Во время полёта самолёта на эшелоне температура окружающего воздуха может достигать −65 °C (при обычных −50..-60 °C), а время полёта часто исчисляется часами. Топливо при этом охлаждается до −10..-20 °C и ниже, и после посадки на охлаждённом крыле будет конденсироваться вода и возможно её замерзание.

«Топливный лёд» особенно опасен тем, что его трудно обнаружить визуально (он прозрачен и неотличим от влаги на крыле). Единственным надёжным способом его обнаружения остаётся ощупывание поверхности крыла голой рукой.

Способы обработки

Обработка может включать несколько этапов:

Механическое удаление

наиболее применимо к недавно выпавшему рыхлому и сухому снегу; производится с помощью щёток, резиновых скребков и мётел. Этот способ наиболее трудоёмок и, как правило, всё равно требует последующего применения противообледенительной жидкости (ПОЖ). К тому же он занимает значительное время и потому малоприменим в условиях интенсивного использования авиатехники.

Также для рыхлого снега может применяться его сдувание сильным потоком воздуха.

Физико-химический метод

Обычно применяется облив поверхностей воздушных судов (ВС) противообледенительными жидкостями (ПОЖ). Такая обработка обычно производится с применением специальных машин - деайсеров, имеющих баки для содержания и подогрева ПОЖ и устройства для нанесения ПОЖ с регулировкой степени распыла (сплошной струёй или «конусом») и расхода ПОЖ. Машины могут иметь как открытую «люльку» для оператора, так и закрытую кабину с создаваемым комфортным микроклиматом и дистанционным управлением органами распыла ПОЖ. Кабина или «люлька» находится на конце управляемой оператором стрелы для доступа ко всем обрабатываемым участкам поверхностей сверху них.

Также могут применяться стационарные установки на оборудованных площадках - как в виде стрел с кабинами операторов, так и в виде больших «ворот», под которыми самолёты проруливают в процессе нанесения ПОЖ.

Как правило, при отсутствии осадков проводится только удаление обледенения нагретой примерно до +60..+70 °C ПОЖ. За счёт температуры ПОЖ растапливает осадки, которые далее смываются струёй жидкости. Содержание воды в ПОЖ может изменяться оператором в зависимости от погодных условий, что обеспечивает её экономию (в зависимости от типа жидкости она стоит единицы долларов США за 1 литр, а на самолёт размеров Boeing-737 может потребоваться от 100 л жидкости до тонны и более в неблагоприятных погодных условиях).

При продолжающихся осадках поверхность ВС после первого этапа обработки покрывается тонким слоем ПОЖ другого типа (отличающегося вязкостью), обеспечивающего более долговременную защиту. Время защитного действия зависит от типа ПОЖ и погодных условий и может составлять от нескольких минут (переохлаждённый дождь) до 45 минут (иней).

Остающаяся на поверхности ВС после обработки тонкая плёнка ПОЖ защищает поверхность ВС на время руления к ВПП и разбега, а затем сдувается встречным потоком воздуха при скорости примерно 150 км/час.

В настоящее время этот способ обработки наиболее широко распространён.

Тепловой метод

При нём обледенение удаляется нагревом поверхности инфракрасными излучателями. В связи с большой энергоёмкостью и недостаточной эффективностью этот способ редко используется.

Также к тепловым методам можно отнести помещение ВС в тёплый ангар и заправку тёплым топливом.

Решение о необходимости противообледенительной обработки и её способах принимают командир воздушного судна (КВС) и наземный персонал, обслуживающий ВС. Противообледенительная обработка и, особенно, её контроль до сих пор остаются областью, мало поддающейся механизации и требующей значительного применения ручного труда квалифицированного персонала.