Определение поля в физике. Словарь “Вселенная и Человек”. Традиционные варианты употребления термина поле

Поле физическое

Область пространства , где проявляют себя физические, достоверно зарегистрированные и точно измеренные силы, называется физическим полем. В рамках современной физики рассматриваются четыре их вида: гравитационное (см. здесь); сильных взаимодействий (см. здесь) - ядерное; слабых взаимодействий (см. здесь) и электромагнитное (см. здесь) - магнитное и электрическое. С точки зрения квантовой теории взаимодействие материальных объектов на расстоянии обеспечивается их взаимным обменом квантами полей, характерными для каждого из перечисленных взаимодействий. Свойства любого из физических полей описываются строгими математическими выражениями.

Последние несколько десятков лет физики не прекращают попыток создать общую, единую теорию поля. Ожидается, что она опишет все названные поля как различные проявления одного – «единого физического поля».

Предполагать существование каких-либо других, кроме перечисленных выше, силовых полей нет никаких теоретических или экспериментальных оснований.

гравитационное

Гравитационное поле проявляет себя силовым влиянием друг на друга любых физических объектов. Сила гравитационного взаимодействия прямо пропорциональна их массам и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она количественно описывается законом Ньютона . Гравитационные силы проявляются при любых расстояниях между объектами.

Квантами поля гравитационного взаимодействия являются гравитоны. Их массы покоя равны нулю. Несмотря на то, что в свободном состоянии они пока не обнаружены, необходимость существования гравитонов вытекает из самых общих теоретических предпосылок и не вызывает сомнений.

Гравитационное поле играет огромную роль в большинстве процессов во Вселенной .

О природе гравитационного поля см. также Относительности теория, общая .

сильных взаимодействий (ядерное )

Поле сильных взаимодействий проявляет себя силовым влиянием на нуклоны - элементарные частицы, составляющие атомные ядра. Оно способно объединить имеющие одноименные электрические заряды протоны, т.е. преодолеть электрические силы их отталкивания.

Связанная с этим полем сила притяжения обратно пропорциональна возведенной в четвертую степень величине расстояния между нуклонами, т.е. она эффективна только на малых дистанциях. На расстояниях менее 10 -15 метра между частицами поле сильных взаимодействий уже в десятки раз мощнее, чем электрическое поле.

Квантами поля сильного взаимодействия являются элементарные частицы - глюоны. Типичное время жизни глюона порядка 10 -23 секунды.

Действие поля сильных взаимодействий немаловажно и для макропроцессов во Вселенной, хотя бы потому, что без этого поля ядра атомов, а значит и сами атомы, просто не могли бы существовать.

слабых взаимодействий

Поле слабых взаимодействий - взаимодействие слабых токов - проявляет себя при взаимодействиях элементарных частиц на расстояниях 10 -18 метра между ними.

Квантами поля слабого взаимодействия являются элементарные частицы - промежуточные бозоны. Типичное время жизни промежуточного бозона порядка 10 -25 секунды.

В рамках попыток построения единой теории поля в настоящее время доказано, что поле слабых взаимодействий и электромагнитное (см. здесь) поле могут быть описаны совместно, а значит имеют родственную природу.

Влияние поля слабых взаимодействий играет свою роль на уровне процессов распадов и рождений элементарных частиц, без которых Вселенная не могла бы существовать в своем нынешнем виде. Особую роль это физическое поле играло в начальный период Большого взрыва .

электромагнитное

Электромагнитное поле проявляет себя во взаимодействии электрических зарядов, покоящихся - электрическое поле - или движущихся - магнитное поле. Оно обнаруживается при любых расстояниях между заряженными телами. Квантами поля электромагнитного взаимодействия являются фотоны. Их массы покоя равны нулю.

Электрическое поле проявляет себя силовым влиянием друг на друга объектов, обладающих некоторым свойством, называемым электрическим зарядом. Природа электрических зарядов неизвестна, однако их величины являются параметрами меры взаимодействия обладающих указанным свойством, т.е. заряженных образований.

Носителями минимальных величин зарядов являются электроны - имеют отрицательный заряд, протоны - имеют положительный заряд - и некоторые другие, очень короткоживущие, элементарные частицы. Физические объекты приобретают положительный электрический заряд при превышении количества содержащихся в них протонов над электронами или - в противоположном случае - отрицательный заряд.

Сила взаимодействия заряженных физических объектов, в том числе элементарных частиц, прямо пропорциональна их электрическим зарядам и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она количественно описывается законом Кулона. Одноименно заряженные объекты отталкиваются, разноименно заряженные - притягиваются.

Магнитное поле проявляет себя силовым влиянием друг на друга тел или образований, например, плазменных, обладающих магнитными свойствами. Эти свойства порождаются текущими в них электрическими токами - упорядоченным движением носителей электрических зарядов. Параметрами меры взаимодействия являются интенсивности текущих электрических токов, которые определяются количеством электрических зарядов, перемещенных за единицу времени через поперечные сечения проводников. Постоянные магниты тоже обязаны своим эффектом возникающим в них внутренним кольцевым молекулярным токам. Таким образом, магнитные силы имеют электрическую природу. Интенсивность магнитного взаимодействия объектов - магнитная индукция - прямо пропорциональна интенсивностям текущих в них электрических токов и обратно пропорциональна возведенной во вторую степень величине расстояния между ними. Она описывается законом Био - Савара - Лапласа.

Электромагнитное поле играет важнейшую роль в любых процессах, протекающих во Вселенной с участием плазмы .

Коль скоро мы перешли к физическим ос-новам концепции современного естество-знания , то, как вы наверное успели заме-тить, в физике существует некоторое коли-чество, казалось бы, простых, но фунда-ментальных понятий, которые, однако, не так-то просто сразу понять. К ним относят-ся постоянно рассматриваемые в нашем курсе пространство, время и вот теперь другое фундаментальное понятие - поле. В механике дискретных объектов, механике Галилея, Ньютона, Декарта, Лапла-са, Лагранжа, Гамильтона и других ме-хаников физического классицизма, мы бы-ли согласны с тем, что силы взаимодейст-вия между дискретными объектами вызы-вают изменение параметров их движения (скорость, импульс, момент импульса), ме-няют их энергию, совершают работу и т.д. И это в общем-то было наглядно и понятно. Однако с изучением природы электричест-ва и магнетизма возникло понимание , что взаимодействовать между собой электриче-ские заряды могут без непосредственного контакта. В этом случае мы как бы перехо-дим от концепции близкодействия к бес-контактному дальнодействию. Это и приве-ло к понятию поля.

Формальное определение этого понятия звучит так: физическим полем называется особая форма материи, связывающая час-тицы (объекты) вещества в единые системы и передающая с конечной скоростью дейст-вие одних частиц на другие. Правда, как мы уже отмечали, такие определения слишком общие и не всегда определяют глубинную да и конкретно-практическую сущность понятия. Физики с трудом отказывались от идеи физического контактного взаимодей-ствия тел и вводили для объяснения раз-личных явлений такие модели как электри-ческую и магнитную «жидкость», для рас-пространения колебаний использовали представление о механических колебаниях частичек среды - модели эфира, оптических флюидов, теплорода, флогистона в тепло-вых явлениях, описывая их тоже с механи-ческой точки зрения, и даже биологи вво-дили «жизненную силу» для объяснения процессов в живых организмах. Все это ни что иное, как попытки описать передачу действия через материальную («механиче-скую») среду.

Однако работами Фарадея (эксперимен-тально), Максвелла (теоретически) и мно-гих других ученых было показано, что су-ществуют электромагнитные поля (в том числе и в вакууме) и именно они переда-ют электромагнитные колебания. Выясни-лось, что и видимый свет есть эти же элек-тромагнитные колебания в определенном диапазоне частот колебаний. Было установ-лено, что электромагнитные волны делятся на несколько видов в шкале колебаний: ра-диоволны (103 - 10-4), световые волны (10-4 - 10-9 м), ИК (5 ×10-4 - 8 ×10-7 м), УФ (4 ×10-7 - 10-9 м), рентгеновское излучение (2 ×10-9 - 6 ×10-12 м), γ-излучение (< 6 ×10-12 м).

Так что же такое поле? Лучше всего вос-пользоваться неким абстрактным представ-лением, и в этой абстракции опять же нет ничего необычного или непонятного: как мы увидим дальше, такие же абстракции используются в построении физики микро-мира и физики Вселенной. Проще всего сказать, что поле - это любая физическая величина, которая в разных точках про-странства принимает различные значения. Например температура - это поле (в дан-ном случае скалярное), которое можно опи-сать как Т = Т(x, y, z), или, если оно меня-ется во времени, Т = Т (x, y, z, t). Могут быть поля давлений, в том числе и атмо-сферного воздуха, поле распределения лю-дей на Земле или различных наций среди населения, распределения оружия на Земле, разных песен, животных, всего чего угодно. Могут быть и векторные поля, как, напри-мер, поле скоростей текущей жидкости. Мы знаем уже, что скорость (x, y, z, t)есть вектор. Поэтому мы записываем скорость движения жидкости в любой точке про-странства в момент t в виде (x, y, z, t). Аналогично могут быть представлены и электромагнитные поля. В частности, элек-трическое поле - векторное, так как куло-новская сила между зарядами - естественно, вектор:

(1.3.1)
Немало изобретательности было потрачено на то, чтобы помочь людям мысленно представить поведение полей. И оказалось, что самая правильная точка зрения - это самая отвлеченная: надо просто рассматри-вать поле как математические функции координат и времени какого-то параметра, описывающего явление или эффект.

Однако можно предположить и наглядную простую модель векторного поля и его опи-сания. Можно построить мысленную кар-тину поля, начертив во многих точках про-странства векторы, которые определяют какую-то характеристику процесса взаимо-действия или движения (для потока жидко-сти - это вектор скорости движущегося по-тока частиц, электрические явления можно модельно рассматривать как заряженную жидкость со своим вектором напряженно-сти поля и т.д.). Заметим, что метод оп-ределения параметров движения через ко-ординаты и импульс в классической меха-нике - это метод Лагранжа, а определение через векторы скоростей и потоки - это ме-тод Эйлера. Такое модельное представле-ние легко вспомнить из школьного курса физики. Это, например, силовые линии электрического поля (рис.). По густоте этих линий (точнее касательных к ним) мы можем судить об интенсивности течения жидкости. Число этих линий на единицу площади, расположенной перпендикуляро к силовым линиям, будет пропорционально напряженности электрического поля Е. Хо-тя картина силовых линий, введенных Фарадеем в 1852 г., очень наглядна, следует понимать, что это лишь условная картина, простая физическая модель (и следователь-но, абстрактная), так как, конечно, не суще-ствует в природе каких-то линий, нитей, простирающихся в пространстве и способ-ных оказать воздействие на другие тела. Силовых линий в действительности не су-ществует, они лишь облегчают рассмотре-ние процессов, связанных с полями сил.

Можно пойти и дальше в такой физической модели: определить сколько жидкости вте-кает или вытекает из некоторого объема вокруг выбранной точки в поле скоростей или напряженностей. Это связано с понят-ным представлением о наличии в каком-то объеме источников жидкости и ее стоков. Такие представления приводят нас к широ-ко используемым понятиям векторного анализа полей: потока и циркуляции. Не-смотря на некоторую абстракцию, на самом деле они наглядны, имеют понятный физи-ческий смысл и достаточно просты. Под потоком понимают общее количество жид-кости, вытекающей в единицу времени че-рез некоторую воображаемую поверхность около выбранной нами точки. Математиче-ски это записывается так:

(1.3.2)
т.е. это количество (поток Фv) равно сум-марному произведению (интегралу) скоро-сти на поверхность ds, через которую жи-кость вытекает.

С понятием потока связано и понятие цир-куляции. Можно задаться вопросом: цирку-лирует ли, приходит ли наша жидкость сквозь поверхность выбранного объема? Физический смысл циркуляции состоит в том, что она определяет меру движения (т.е. опять-таки связана со скоростью) жид-кости через замкнутый контур (линию L, в отличие от потока через поверхность S). Математически это тоже можно записать: циркуляция по L

(1.3.3)
Конечно, Вы можете сказать, что эти поня-тия потока и циркуляции чересчур все же абстрактны. Да, это так, но все же лучше пользоваться абстрактными представле-ниями, если они дают в конце концов пра-вильные результаты. Жаль, конечно, что они есть абстракция, но пока ничего не по-делаешь.

Тем не менее, оказывается, что пользуясь этими двумя понятиями потока и циркуля-ции, можно придти к знаменитым четырем уравнениям Максвелла, которые описы-вают практически все законы электриче-ства и магнетизма через представление по-лей. Там, правда, используются еще два по-нятия: дивергенция - расхождение (на-пример, того же потока в пространстве), описывающая меру источника, и ротор - вихрь. Но они нам для качественного рас-смотрения уравнений Максвелла не пона-добятся. Мы, естественно, приводить их, а тем более запоминать, в нашем курсе не будем. Более того, из этих уравнений выте-кает, что электрическое и магнитное поля связаны друг с другом, образуя единое электромагнитное поле, в котором распро-страняются электромагнитные волны, со скоростью, равной скорости света с = 3 ×108 м/с. Отсюда, кстати, и был сделан вы-вод об электромагнитной природе света.

Уравнения Максвелла являются математи-ческим описанием экспериментальных за-конов электричества и магнетизма, уста-новленных ранее многими учеными (Ам-пер, Эрстед, Био - Савар, Ленц и другие), и во многом Фарадеем, про кото-рого говорили, что он не успевает записы-вать то, что открывает. Надо заметить, что Фарадей сформулировал идеи поля, как но-вой формы существования материи, не только на качественном, но и количествен-ном уровне. Любопытно, что свои научные записи он запечатал в конверт, просив вскрыть его после смерти. Это было сдела-но, однако, лишь в 1938 г. Поэтому спра-ведливо считать теорию электромагнитного поля теорией Фарадея - Максвелла. Отдавая дань заслугам Фарадея, основатель элек-трохимии и президент Лондонского коро-левского общества Г. Дэви, у которого поначалу Фарадей работал лаборантом, пи-сал: «Хотя я сделал ряд научных открытий, самым замечательным является то, что я открыл Фарадея».

Не будем здесь касаться многочисленных явлений, связанных с электричеством и магнетизмом (для этого есть свои разделы в физике), но отметим, что как явления элек-тро- и магнитостатики, так и динамики за-ряженных частиц в классическом представ-лении хорошо описываются уравнениями Максвелла. Поскольку все тела в микро- и макромире являются так или иначе заря-женными, то теория Фарадея - Максвелла приобретает поистине универсальный ха-рактер. В рамках ее описываются и объяс-няются движение и взаимодействие заря-женных частиц при наличии магнитного и электрического полей. Физический же смысл четырех уравнений Максвелла со-стоит в следующих положениях.

1. Закон Кулона, определяющий си-лы взаимодействия зарядов q1 и q2

(1.3.4)
отражает действие электрического поля на эти заряды

(1.3.5)
где - напряженность электриче-ского поля, а - сила Кулона. От-сюда можно получить и другие ха-рактеристики взаимодействия заря-женных частиц (тел): потенциал по-ля, напряжение, ток, энергию поля и т.д.

2. Электрические силовые линии начи-наются на одних зарядах (условно принято считать на положительных) и заканчиваются на других - отрица-тельных, т.е. они прерывны и совпа-дают (в этом их модельный смысл) с направлением векторов напряжен-ности электрического поля - они просто касательные к силовым ли-ниям. Магнитные силовые замкнуты сами на себя, не имеют ни начала, ни конца, т.е. непрерывны. Это являет-ся доказательством отсутствия маг-нитных зарядов.

3. Любой электрический ток создает магнитное поле, причем это магнит-ное поле может создаваться как по-стоянным (тогда будет постоянное магнитное поле) и переменным электрическим током, так и пере-менным электрическим полем (пе-ременное магнитное поле).

4. Переменное магнитное поле за счет явления электромагнитной индук-ции Фарадея создает электрическое поле. Таким образом, переменные электрические и магнитные поля создают друг друга и оказывают взаимное влияние. Поэтому-то и го-ворят об едином электромагнитном поле.

В уравнения Максвелла входит константа с, которая с поразительной точностью совпа-дает со скоростью света, откуда и был сде-лан вывод, что свет - это поперечная волна в переменном электромагнитном поле. Причем этот процесс распространения вол-ны в пространстве и времени продолжается до бесконечности, так как энергия электри-ческого поля переходит в энергию магнит-ного поля и наоборот. В электромагнитных световых волнах взаимно перпендикулярно колеблются векторы напряженности элек-трического и магнитного полей (отсю-да и следует. что свет - поперечные волны), а в качестве носителя волны выступает са-мо пространство, которое тем самым явля-ется напряженным. Однако скорость рас-пространения волн (не только световых) зависит от свойств среды. Поэтому, если гравитацинное взаимодействие происходит «мгновенно», т.е. является дальнодейст-вующим, то электрическое взаимодействие будет в этом смысле близкодействующим, так как распространение волн в простран-стве происходит с конечной скоростью. Характерными примерами является затуха-ние и дисперсия света в различных средах.

Таким образом, уравнения Максвелла связывают световые явления с электриче-скими и магнитными и тем самым придают фундаментальное значение теории Фарадея - Масвелла. Заметим еще раз, что электро-магнитное поле существует повсюду во Вселенной, в том числе и в разных средах. Уравнения Максвелла играют в электро-магнетизме ту же роль, что уравнения Нью-тона в механике, и лежат в основе электро-магнитной картины мира.

Через 20 лет после создания теории Фара-дея - Максвелла в 1887 г. Герц экспери-ментально подтвердил наличие электро-магнитного излучения в диапазоне длин волн от 10 до 100 м с помощью искрового разряда и регистрацией сигнала в контуре в нескольких метрах от разрядника. Измерив параметры излучения (длину и частоту волны), он получил, что скорость распро-странения волны совпадает со скоростью света. Впоследствии были изучены и ос-воены другие диапазоны частот электро-магнитного излучения. Было установлено, что можно получить волны любой частоты при условии наличия соответствующего источника излучения. Электронными мето-дами можно получить электромагнитные волны до 1012 Гц (от радиоволн до микро-волн), за счет излучения атомов можно по-лучать инфракрасные, световые, ультра-фиолетовые и рентгеновские волны (диапа-зон частот от 1012 до 1020 Гц). Гамма-излучение с частотой колебаний выше 1020 Гц испускается атомными ядрами. Таким образом было установлено, что природа всех электромагнитных излучений одина-кова и все они различаются лишь своими частотами.

Электромагнитное излучение (как и любое другое поле) обладает энергией и импуль-сом. И эту энергию можно извлекать, соз-давая условия, при которых поле приводит тела в движение. Применительно к опреде-лению энергии электроманитной волны удобно расширить упомянутое нами поня-тие потока (в данном случае энергии) до представления плотности потока энергии, введенной впервые русским физиком Умовым, который, кстати, занимался и бо-лее общими вопросами естествознания, в частности связи живого в природе с энерги-ей. Плотность потока энергии - это количе-ство электромагнитной энергии, проходя-щей через единичную площадку, перпенди-кулярную к направлению распространения волны, в единицу времени. Физически это означает, что изменение энергии внутри объема пространства определяется ее пото-ком, т.е. вектором Умова:

(1.3.6)
где с - скорость света.
Поскольку для плоской волны Е = В и энер-гия делится поровну между волнами элек-трического и магнитного полей, то можно записать (1.3.6) в виде

(1.3.7)
Что касается импульса световой волны, то проще получить его из знаменитой форму-лы Эйнштейна Е = mc2, полученной им в теории относительности, в которую также входит скорость света с как скорость рас-пространения электромагнитной волны, по-этому использование формулы Эйнштейна здесь физически оправдано. Проблемами теории отнсительности мы будем занимать-ся дальше в главе 1.4. Здесь же отметим, что в формуле Е = mc2 отражена не только взаимосвязь между энерегией Е и массой m, а и закон сохранения полной энергии в лю-бом физическом процессе, а не отдельно сохранения массы и энергии.

Тогда учитывая, что энергии Е соответст-вует масса m, импульс электромагнитной волны, т.е. произведение массы на скорость (1.2.6), с учетом скорости электромагнит-ной волны с

(1.3.8)
Такое распределение приведено для на-глядности, так как, строго говоря, формулу (1.3.8) получить из соотношения Эйн-штейна некорректно, поскольку экспери-ментально установлено, что масса фотона как кванта света равна нулю.

С позиций современного естествознания именно Солнце через электромагнитное из-лучение обеспечивает условия жизни на Земле и эту энергию и импульс мы может определить физическими законами коли-чественно. Кстати, если есть импульс света, значит свет должен оказывать давление на поверхность Земли. Почему мы не ощуща-ем его? Ответ прост и заключается в приве-денной формуле (1.3.8), так как величина с - огромное число. Тем не менее экспери-ментально давление света было обнаруже-но в весьма тонких опытах русским физи-ком П. Лебедевым, а во Вселенной под-тверждается наличием и положением ко-метных хвостов, возникающих под дейст-вием импульса электромагнитного светово-го излучения. Другим примером, подтвер-ждающим, что поле обладает энергией, служит передача сигналов от космических станций или с Луны на Землю. Хотя эти сигналы и распространяются со скоростью света с, но с конечным временем из-за больших расстояний (от Луны сигнал идет 1,3 с, от самого Солнца - 7 с). Вопрос: где находится энергия излучения между пере-датчиком на космической станции и при-емником на Земле? В соответствии с зако-ном сохранения она должна ведь где-то быть! И она действительно таким образом содержится именно в электромагнитном поле.

Заметим также, что передача энергии в пространстве может осуществляться только в переменных электромагнитных полях, когда изменяется скорость частицы. При постоянном электрическом токе создается постоянное магнитное поле, которое дейст-вует на заряженную частицу перпендику-лярно направлению ее движения. Это так называемая сила Лоренца, «закручиваю-щая» частицу. Поэтому постоянное маг-нитное поле не совершает работы (δА = dFdr) и, следовательно, отсутствует переда-ча энергии от движущихся в проводнике зарядов к частицам вне проводника в про-странстве вокруг посредством постоянного магнитного поля. В случае переменного магнитного поля, вызванного переменным электрическим полем, заряды в проводнике испытывают ускорение вдоль направления движения и энергия может передаваться частицам, находящимся в пространстве вблизи проводника. Поэтому только дви-жущиеся с ускорением заряды могут пере-давать энергию посредством создаваемого ими переменного электромагнитного поля.

Возвращаясь к общему понятию поля как некоторого распределения соответствую-щих величин или параметров в пространст-ве и времени, можно считать, что такое по-нятие применительно ко многим явлениям не только в природе, но и в экономике или социуме при использовании соответст-вующих физических моделей. Необходимо только в каждом случае убеждаться - обна-руживает ли выбранная физическая вели-чина или ее аналог такие свойства, чтобы описание ее с помощью модели поля оказа-лось полезным. Заметим, что непрерыв-ность величин, описывающих поле, являет-ся одной из основных параметров поля и позволяет использовать соответствующий математический аппарат, в том числе крат-ко упомянутый нами выше.

В этом смысле вполне оправдано говорить и о гравитационном поле, где вектор грави-тационной силы меняется непрерывно, и о других полях (например информационное, поле рыночной экономики, силовые поля художественных произведений и т.д.), где проявляются неизвестные пока нам силы или субстанции. Правомерно распростра-нив свои законы динамики на небесную механику, Ньютон установил закон все-мирного тяеготения

(1.3.9)
согласно которому сила, действующая ме-жду двумя массами m1 и m2 обратно про-порциональна квадрату расстояния R меж-ду ними, G - константа гравитационного взаимодействия. Если ввести по аналогии с электромагнитным полем вектор напря-женности поля тяготения, то можно пе-рейти от (1.3.9) непосредственно к гравита-ционному полю.

Формулу (1.3.9) можно понять так: масса m1 создает в пространстве некоторые усло-вия, на которые реагирует масса m2 , и в результате испытывает направленную к m1 силу. Вот эти-то условия и есть грави-тационное поле, источником которого яв-ляется масса m1 . Чтобы не записывать ка-ждый раз силу, зависящую от m2, разделим обе части уравнения (1.3.9) на m2 , считая ее за массу пробного тела, т.е. того, на ко-тороое мы действуем (при этом считается, что пробная масса не вносит возмущений в гравитационное поле). Тогда

(1.3.10)
По существу теперь правая часть (1.3.10) зависит только от расстояния между масса-ми m1 и m2 , но не зависит от массы m2 и определяет гравитационной поле в любой точке пространства, отстоящей от источни-ка гравитации m1 на расстоянии R безотно-сительно к тому, имеется ли там масса m2 или нет. Поэтому можно еще раз перепи-сать (1.3.10) так, чтобы определяющее зна-чение имела масса источника гравитацион-ного поля. Обозначим правую часть (1.3.10) через g:

(1.3.11)
где М = m1 .
Поскольку F - вектор, то, естественно, и g - тоже вектор. Он называется вектором на-пряженности гравитационного поля и дает полное описание этого поля массы М в лю-бой точке пространства. Поскольку вели-чина g определяет силу, действующую на единицу массы, то по своему физическому смыслу и размерности она есть ускорение. Поэтому уравнение классической динамики (1.2.5) совпадает по форме с силами, дейст-вующими в гравитационном поле

(1.3.12)
К гравитационному полю можно также применить понятие силовых линий, где по их густоте (плотности) судят о величинах действующих сил. Силовые гравитацион-ные линии сферической массы есть пря-мые, направленные к центру сферы массой М как источнику гравитации, и согласно (1.3.10) силы взаимодействия уменьшаются с удалением от М по закону обратной про-порциональности квадрату расстояния R. Таким образом, в отличие от силовых ли-ний электрического поля, начинающихся на положительном и заканчивающихся на от-рицательном, в гравитационном поле нет определенных точек, где бы они начина-лись, вместе с тем они простираются до бесконечности.

По аналогии с электрическим потенциалом (- потенциальная энергия еди-ничного заряда, находящегося в электриче-ском поле), можно ввести гравитационный потенциал

(1.3.13)
Физический смысл (1.3.13) состоит в том, что Фгр - это потенциальная энергия, при-ходящаяся на единицу массы. Введение по-тенциалов электрического и гравитацион-ного полей, которые являются, в отличие от векторных величин напряженностей и, скалярными величинами, упрощает количе-ственные расчеты. Заметим, что ко всем параметрам полей применим принцип су-перпозиции, заключающийся в независимо-сти действия сил (напряженностей, потен-циалов) и возможности вычисления резуль-тирующего параметра (и векторного, и ска-лярного) соответствующим сложением.

Несмотря на похожесть основных законов электрических (1.3.4) и гравитационных (1.3.9) полей и методологий введения и ис-пользования описывающих их параметров, объяснить их сущность на основе общей природы до сих пор не удалось. Хотя такие попытки, начиная от Эйнштейна и до по-следнего времени, постоянно предприни-маются с целью создания единой теории поля. Естественно, что это упростило бы наше понимание физического мира и по-зволило описать его единообразно. На не-которых таких попытках мы остановимся в главе 1.6.

Считается, что гравитационные и электри-ческие поля действуют независимо и могут сосуществовать в любой точке пространст-ва одновременно, не влияя друг на друга. Суммарная сила, действующая на пробную частицу с зарядом q и массой m, может быть выражена векторной суммой и. Суммировать векторы и не имеет смысла, поскольку они имеют разную раз-мерность. Введение в классической элек-тродинамике понятия электромагнитного поля с передачей взаимодействия и энергии путем распространения волн через про-странство, позволило отойти от механиче-ского представления эфира. В старом пред-ставлении понятие эфира как некой среды, объясняющей передачу контактного дейст-вия сил, было опровергнуто как экспери-ментально опытами Майкельсона по изме-рению скорости света, так и, главным обра-зом, теорией относительности Эйнштейна. Через поля оказалось возможным описы-вать физические взаимодействия, для чего собственно и были сформулированы общие для разных типов полей характеристики, о которых мы здесь говорили. Правда следу-ет отметить, что сейчас идея эфира отчасти возрождается некоторыми учеными на базе понятия физического вакуума.

Так после механической картины сформи-ровалась новая к тому времени электромаг-нитная картина мира. Ее можно рассматри-вать как промежуточную по отношению к современной естественнонаучной. Отметим некоторые общие характеристики этой па-радигмы. Поскольку она включает не толь-ко представления о полях, но и появившие-ся к тому времени новые данные об элек-тронах, фотонах, ядерной модели атома, закономерностях химического строения веществ и расположения элементов в пе-риодической системе Менделеева и ряд других результатов по пути познания при-роды, то, конечно, в эту концепцию вошли также идеи квантовой механики и теории относительности, о которых речь еще будет идти дальше.

Главным в таком представлении является возможность описать большое количество явлений на основе понятия поля. Было ус-тановлено, в отличие от механической кар-тины, что материя существует не только в виде вещества, но и поля. Электромагнит-ное взаимодействие на основе волновых представлений достаточно уверенно опи-сывает не только электрические и магнит-ные поля, но и оптические, химические, те-пловые и механические явления. Методо-логия полевого представления материи мо-жет быть использована и для понимания полей иной природы. Сделаны попытки увязать корпускулярную природу микро-объектов с волновой природой процессов. Было установлено, что «переносчиком» взаимодействия электромагнитного поля является фотон, который подчиняется уже законам квантовой механики. Делаются по-пытки найти гравитон, как носитель грави-тационного поля.

Однако несмотря на существенное продви-жение вперед в познании окружающего нас мира, электромагнитная картина не свобод-на от недостатков. Так, в ней не рассматри-ваются вероятностные подходы, по сущест-ву вероятностные закономерности не при-знаются фундаментальными, сохранены детерминистический подход Ньютона к описанию отдельных частиц и жесткая од-нозначность причинно-следственных свя-зей (что сейчас оспаривается синергети-кой), ядерные взаимодействия и их поля объясняются не только электромагнитными взаимодействиями между заряженными частицами. В целом такое положение по-нятно и объяснимо, так как каждое проник-новение в природу вещей углубляет наши представления и требует создания новых адекватных физических моделей.

Полевая переменная может рассматриваться формально подобно тому, как в обычной квантовой механике рассматривается пространственная координата, и полевой переменной сопоставляется квантовый оператор соответствующего названия.

Полевая парадигма , представляющая всю физическую реальность на фундаментальном уровне сводящейся к небольшому количеству взаимодействующих (квантованных) полей, является не только одной из важнейших в современной физике, но, пожалуй, безусловно главенствующей .

Физическое поле, таким образом, можно характеризовать как распределенную динамическую систему, обладающую бесконечным числом степеней свободы .

Роль полевой переменной для фундаментальных полей часто играет потенциал (скалярный, векторный, тензорный), иногда - величина, называемая напряжённостью поля. (Для квантованных полей в некотором смысле обобщением классического понятия полевой переменной также является соответствующий оператор).

Также полем в физике называют физическую величину , рассматриваемую как зависящую от места: как полный набор, вообще говоря, разных значений этой величины для всех точек некоторого протяженного непрерывного тела - сплошной среды , описывающий в своей совокупности состояние или движение этого протяженного тела . Примерами таких полей может быть:

  • температура (вообще говоря разная в разных точках, а также и в разные моменты времени) в некоторой среде (например, в кристалле, жидкости или газе) - (скалярное) поле температуры,
  • скорость всех элементов некоторого объёма жидкости - векторное поле скоростей,
  • векторное поле смещений и тензорное поле напряжений при деформации упругого тела.

Динамика таких полей также описывается дифференциальными уравнениями в частных производных , и исторически первыми, начиная с XVIII века, в физике рассматривались именно такие поля.

Современная концепция физического поля выросла из идеи электромагнитного поля , впервые осознанной в физически конкретном и сравнительно близком к современному виде Фарадеем , математически же последовательно реализованной Максвеллом - изначально с использованием механической модели гипотетической сплошной среды - эфира , но затем вышедшей за рамки использования механической модели.

Энциклопедичный YouTube

  • 1 / 5

    Среди полей в физике выделяют так называемые фундаментальные. Это поля, которые, согласно с полевой парадигмой современной физики, составляют основу физической картины мира, все остальные поля и взаимодействия из них выводятся. Включают два основных класса взаимодействующих друг с другом полей:

    • фундаментальные фермионные поля , прежде всего представляющие физическую основу описания вещества ,
    • фундаментальные бозонные поля (включая гравитационное, представляющее собой тензорное калибровочное поле), являющиеся расширением и развитием концепции максвелловского электромагнитного и ньютоновского гравитационного полей; на них строится теория .

    Существуют теории (например, теория струн , различные другие теории объединения), в которых роль фундаментальных полей занимают несколько другие, ещё более фундаментальные с точки зрения этих теорий, поля или объекты (а нынешние фундаментальные поля появляются или должны появляться в этих теориях в некотором приближении как «феноменологическое» следствие). Однако пока такие теории не являются достаточно подтвержденными или общепринятыми.

    История

    Исторически среди фундаментальных полей сначала были открыты (именно в качестве физических полей ) поля, ответственные за электромагнитное (электрическое и магнитное поля, затем объединенные в электромагнитное поле), и гравитационное взаимодействие. Эти поля были открыты и достаточно детально изучены уже в классической физике. Вначале эти поля (в рамках ньютоновской теории тяготения, электростатики и магнитостатики) выглядели для большинства физиков скорее как формальные математические объекты, вводимые для формального же удобства, а не как полноценная физическая реальность, несмотря на попытки более глубокого физического осмысления, остававшиеся однако довольно туманными или не приносящими слишком существенных плодов . Но начиная с Фарадея и Максвелла подход к полю (в данном случае - к электромагнитному полю) как к вполне содержательной физической реальности стал применяться систематически и очень плодотворно, включая и существенный прорыв в математическом оформлении этих идей.

    С другой стороны, по мере развития квантовой механики становилось всё более ясно, что вещество (частицы) обладает свойствами, которые теоретически присущи именно полям.

    Современное состояние

    Таким образом, оказалось, что физическая картина мира может быть сведена в своем фундаменте к квантованным полям и их взаимодействию.

    В какой-то мере, главным образом в рамках формализма интегрирования по траекториям и диаграмм Фейнмана , произошло и противоположное движение: поля стало можно в заметной мере представить как почти классические частицы (точнее - как суперпозицию бесконечного количества движущихся по всем мыслимым траекториям почти классических частиц), а взаимодействие полей друг с другом - как рождение и поглощение частицами друг друга (тоже с суперпозицией всех мыслимых вариантов такового). И хотя этот подход очень красив, удобен и позволяет во многом психологически вернуться к представлению о частице, имеющей вполне определённую траекторию, он, тем не менее, не может отменить полевой взгляд на вещи и даже не является полностью симметричной альтернативой ему (а поэтому всё же ближе к красивому, психологически и практически удобному, но всё же всего лишь формальному приему, чем к полностью самостоятельной концепции). Дело тут в двух ключевых моментах:

    1. процедура суперпозиции никак «физически» не объяснима в рамках по-настоящему классических частиц, она просто добавляется к почти классической «корпускулярной» картине, не являясь её органическим элементом; в то же время с полевой точки зрения эта суперпозиция имеет ясную и естественную интерпретацию;
    2. сама частица, движущаяся по одной отдельной траектории в формализме интеграла по траекториям, хотя и очень похожа на классическую, но всё-таки классическая не до конца: к обычному классическому движению по определённой траектории с определённым импульсом и координатой в каждый конкретный момент даже для одной-единственной траектории - приходится добавлять совершенно чуждое для этого подхода в его чистом виде понятие фазы (то есть некоторого волнового свойства), и этот момент (хотя он действительно сведен к минимуму и о нём довольно легко просто не думать) также не имеет какой-то органичной внутренней интерпретации; а в рамках обычного полевого подхода такая интерпретация опять есть, и она опять органична.

    Таким образом, можно заключить, что подход интегрирования по траекториям есть хотя и очень психологически удобная (ведь, скажем, точечная частица с тремя степенями свободы гораздо проще, чем бесконечномерное поле, которое её описывает) и доказавшая практическую продуктивность, но всё же лишь некая переформулировка , пусть и довольно радикальная, полевой концепции, а не её альтернатива.

    И хотя на словах на этом языке всё выглядит очень «корпускулярно» (например: «взаимодействие заряженных частиц объясняются обменом другой частицей - переносчиком взаимодействия» или «взаимное отталкивание двух электронов обусловлено обменом между ними виртуальным фотоном»), однако за этим стоят такие типично полевые реальности, как распространение волн, пусть и достаточно хорошо спрятанные ради создания эффективной схемы вычислений, да во многом и давая дополнительные возможности качественного понимания.

    Список фундаментальных полей

    Фундаментальные бозонные поля (поля - переносчики фундаментальных взаимодействий)

    Эти поля в рамках стандартной модели являются калибровочными полями . Известны такие их типы:

    • Электрослабое
      • Электромагнитное поле (см. тж. Фотон)
      • Поле - переносчик слабого взаимодействия (см. тж. W- и Z-бозоны)
    • Глюонное поле (см. тж. Глюон)

    Гипотетические поля

    Гипотетическими в широком смысле можно считать любые теоретические объекты (например, поля), которые описываются теориями, не содержащими внутренних противоречий, явно не противоречащими наблюдениям и способными в то же время дать наблюдаемые следствия, позволяющие сделать выбор в пользу этих теорий по сравнению с теми, которые приняты сейчас. Ниже мы будем говорить (и это в целом соответствует обычному пониманию термина) в основном о гипотетичности в этом более узком и строгом смысле, подразумевающем обоснованность и фальсифицируемость предположения, которое мы называем гипотезой.

    В теоретической физике рассматривается множество различных гипотетических полей, каждое из которых является принадлежностью вполне конкретной определённой теории (по своему типу и математическим свойствам эти поля могут быть совсем или почти такими же, как известные не гипотетические поля, а могут более или менее сильно отличаться; в том и другом случае под их гипотетичностью имеется в виду то, что они пока не наблюдались в реальности, не были обнаружены экспериментально; в отношении части гипотетических полей может стоять вопрос о том, могут ли они наблюдаться в принципе, и даже могут ли они вообще существовать - например, если теория, в которой они присутствует, вдруг окажется внутренне противоречивой).

    Вопрос о том, что следует считать критерием, позволяющим перенести некое конкретное поле из разряда гипотетических в разряд реальных, довольно тонок, поскольку подтверждения той или иной теории и реальности тех или иных объектов, в ней содержащихся, бывают зачастую более или менее косвенными. В этом случае дело сводится обычно к какому-то разумному соглашению научного сообщества (члены которого более или менее детально сознают, о какой степени подтвержденности на самом деле идет речь).

    Даже в теориях, считающихся достаточно хорошо подтвержденными, находится место гипотетическим полям (тут речь идет о том, что разные части теории проверены с разной степенью тщательности, и некоторые поля, играющие в них в принципе важную роль, пока не проявились в эксперименте достаточно определённо, то есть пока выглядят именно как гипотеза, придуманная для тех или иных теоретических целей, в то время как другие поля, фигурирующие в той же теории, изучены уже достаточно хорошо, чтобы говорить о них как о реальности).

    Примером такого гипотетического поля является поле Хиггса , являющееся важным в Стандартной модели , остальные поля которой отнюдь не являются гипотетическими, а сама модель, пусть и с неизбежными оговорками, считается описывающей реальность (по крайней мере, до той степени, в какой реальность известна).

    Существует множество теорий, содержащих поля, которые (пока) никогда не наблюдались, а иногда сами же эти теории дают такие оценки, что их гипотетические поля по-видимому (из-за слабости их проявления, следующей из самой теории) и не могут в принципе быть обнаружены в обозримом будущем (например, торсионное поле). Такие теории (если не содержат, кроме практически непроверяемых, ещё и достаточного количества легче проверяемых следствий) не рассматриваются как представляющие практический интерес, если только не всплывет какой-то нетривиальный новый способ их проверки, позволяющий обойти очевидные ограничения. Иногда же (как, например, во многих альтернативных теориях гравитации - например, поле Дикке) вводятся такие гипотетические поля, о силе проявления которых сама теория вообще не может ничего сказать (например, константа связи этого поля с другими неизвестна и может быть как довольно большой, так и сколь угодно малой); с проверкой таких теорий обычно также не торопятся (поскольку таких теорий много, а своей полезности каждая из них ничем не доказала, и даже формально нефальсифицируема), за исключением случаев, когда какая-то из них не начинает по каким-то причинам казаться перспективной для разрешения каких-то текущих затруднений (впрочем, от отсеивания теорий на основании нефальсифицируемости - особенно из-за неопределенных констант - тут иногда отказываются, так как серьезная добротная теория иногда может быть проверена в надежде, что её эффект обнаружится, хотя гарантий этого и нет; особенно это верно, когда теорий-кандидатов вообще немного или некоторые из них выглядят особенно фундаментально интересными; также - в случаях, когда можно проверять теории широкого класса все сразу по известным параметрам, не тратя специальных усилий на проверку каждой в отдельности).

    Следует также заметить, что принято называть гипотетическими лишь такие поля, которые совсем не имеют наблюдаемых проявлений (или имеют их недостаточно, как в случае с полем Хиггса). Если же существование физического поля твердо установлено по его наблюдаемым проявлениям, и речь идет лишь об улучшении его теоретического описания (например, о замене ньютоновского гравитационного поля на поле метрического тензора в ОТО), то говорить о том или другом как о гипотетических обычно не принято (хотя для ранней ситуации в ОТО можно было говорить о гипотетическом характере тензорной природы гравитационного поля).

    В заключение упомянем о таких полях, сам тип которых достаточно необычен, то есть теоретически вполне мыслим, но никакие поля подобных типов никогда не наблюдались на практике (а в некоторых случаях на ранних этапах развития их теории могли возникать и сомнения в её непротиворечивости). К таким, прежде всего, следует отнести тахионные поля . Собственно, тахионные поля можно назвать скорее лишь потенциально гипотетическими (то есть не достигающими статуса обоснованного предположения ), так как известные конкретные теории, в которых они играют более или менее существенную роль, например, теория струн , сами не достигли статуса достаточно подтвержденных .

    Ещё более экзотические (например, лоренц-неинвариантные - нарушающие принцип относительности) поля (при том, что абстрактно-теоретически вполне мыслимы) в современной физике можно отнести к стоящим уже достаточно далеко за рамками аргументированного предположения, то есть, строго говоря, их не рассматривают даже в качестве

    Материализация духов и раздача слонов.
    Входные билеты от 50 к. до 2 р.
    И. Ильф, Е Петров

    Что такое фундаментальные взаимодействия и фундаментальные поля? Почему фундаментальные поля можно считать одной из составляющих материи?

    Урок-лекция

    О том, что поле - это особый вид материи, можно прочитать во многих учебниках физики и даже в энциклопедическом словаре. А вот пояснения к этому утверждению встречаются далеко не всегда. Поэтому часто смысл сказанного остается непонятым. Попробуем разобраться в этом и «материализовать поле». Заметим, что приведенное выше утверждение относится не к любым полям, а только к фундаментальным. Что же такое фундаментальные поля?

    Фундаментальные взаимодействия и фундаментальные поля . Изучая физику, вы знакомились с различными силами - силой упругости, силой трения, силой тяжести. Каждая из этих сил характеризует некоторое взаимодействие между телами. Как вы знаете, развитие науки показало, что все макроскопические тела состоят из атомов и молекул (точнее, из ядер и электронов). Из атомно-молекулярной модели следует, что некоторые из взаимодействий между макроскопическими телами можно представить как результат взаимодействия между атомами и молекулами или, при еще большем углублении в структуру вещества, как результат взаимодействия между ядрами и электронами, входящими в состав макроскопических тел.

    В частности, такие силы, как сила упругости и сила трения, есть результат сил, действующих между электронами и ядрами. А вот гравитационные взаимодействия и электромагнитные взаимодействия свести к каким-то другим взаимодействиям не удалось, хотя такие попытки и предпринимались.

    Для характеристики взаимодействий, которые не сводятся к другим взаимодействиям, стали использовать понятие фундаментальные , что означает «основные».

    Как говорилось в предыдущем параграфе, фундаментальные гравитационное и электромагнитное взаимодействия можно рассматривать _ на основе взаимодействия с полем. Поля, соответствующие фундаментальным взаимодействиям, стали называть фундаментальными полями .

    Фундаментальными взаимодействиями являются гравитационное и электромагнитное взаимодействия.

    Развитие науки показало, что гравитационное и электромагнитное взаимодействия не единственные фундаментальные взаимодействия. В настоящее время обнаружено четыре фундаментальных взаимодействия. О двух других фундаментальных взаимодействиях мы узнаем при изучении микромира.

    Электромагнитное и гравитационное поля - это фундаментальные поля, которые не могут быть сведены к движению каких-либо частиц.

    Дальнодействие и близкодействие . Мы уже знаем, что взаимодействие между частицами (заряженными и незаряженными) можно описывать при помощи полей, но можно и не вводить понятие поля. Концепцию, в соответствии с которой взаимодействие между частицами описывают напрямую, без введения понятия поля, называют концепцией дальнодействия. Название это означает, что частицы взаимодействуют на далеком расстоянии. Наоборот, вторую концепцию, в соответствии с которой взаимодействие осуществляется через посредство поля (гравитационного и электромагнитного), называют концепцией близко-действия. Смысл понятия близкодействия заключается в том, что частица взаимодействует с полем, которое имеется вблизи нее, хотя само это поле может создаваться частицами, находящимися очень далеко (рис. 13).

    Рис. 13. Иллюстрация взаимодействия на основе концепции дальнодействия (а) и концепции близкодействия (б. в)

    В первом случае (см. рис. 13, а) на заряд q действует сила F со стороны заряда Q, находящегося на расстоянии r. Во втором случае заряд Q создает в пространстве вокруг себя поле Е(х, у, z). В частности, в точке с координатами х 0 , у 0 , z 0 , где находится заряд q, создается поле Е(х 0 , у 0 , z 0) (см. рис. 13, б). Это поле, а не непосредственно заряд Q взаимодействует с зарядом q (см. рис. 13, в).

    Исторически знания о природе развивались таким образом, что концепция близкодействия, предложенная в 30-е гг. XIX в, английским физиком М. Фарадеем, воспринималась лишь как удобное описание.

    Положение принципиально изменилось после открытия электромагнитных волн, распространяющихся с конечной скоростью - скоростью света. Из теории электромагнитных волн следовало, что любое изменение электромагнитного поля распространяется через пространство также со скоростью света. Обращаясь к примеру, приведенному на рисунке 13, можно сказать, что если заряд Q в какой-то момент времени начнет движение, то заряд q «ощутит» изменение действующей на него силы не в тот же момент времени, а спустя время r/с (с - скорость света), т. е. время, необходимое для того, чтобы электромагнитная волна дошла от заряда Q до заряда q.

    Конечность распространения электромагнитных волн приводит к тому, что описание электромагнитного взаимодействия на основе концепции дальнодействия становится неудобным.

    Чтобы понять это, рассмотрим следующий пример. В 1054 г. на небосводе появилась яркая звезда, свет которой наблюдался даже днем в течение нескольких недель. Затем звезда угасла, и в настоящее время в районе небесной сферы, где находилась звезда, отмечается слабо светящееся образование, которое получило название Крабовидной туманности. В соответствии с современными представлениями об эволюции звезд произошла вспышка звезды, во время которой ее мощность излучения увеличилась в миллиарды раз, после чего звезда распалась. На месте ярко светящейся звезды образовались практически не излучающая нейтронная звезда и расширяющееся облако слабо светящегося газа.

    С точки зрения концепции близкодействия наблюдение света звезды сводится к следующему. Заряды, находящиеся на звезде, создали поле, которое в виде волны дошло до Земли и оказало воздействие на электроны в сетчатке глаза наблюдателя. При этом волна достигла Земли за сотни лет. Люди наблюдали вспышку звезды, когда самой звезды уже не было. Если попробовать описать это наблюдение на основе концепции дальнодействия, то приходится считать, что заряды в сетчатке глаза взаимодействуют не с зарядами звезды, а с теми, которые когда-то были на звезде, которой уже нет. Заметим, что в процессе образования нейтронной звезды многие заряды исчезают, поскольку из электронов и протонов образуются нейтроны - нейтральные частицы, практически не участвующие в электромагнитном взаимодействии. Согласитесь, что описание на основе взаимодействия с тем, что когда-то было, но не существует в настоящий момент времени, «не очень удобное».

    Другая причина признать поле материальным связана с тем, что электромагнитная волна переносит через пространство энергию и импульс (подробнее см. § 57). Если поле не считать материальным, то следует признать, что энергия и импульс не связаны с чем-то материальным и сами по себе переносятся через пространство.

    Сформулированная в 1905 г. Альбертом Эйнштейном теория относительности базируется на постулате, в соответствии с которым не существует взаимодействий (в том числе и фундаментальных), распространяющихся быстрее света.

    Мы начали этот параграф с «материализации духов». Физики - народ остроумный, и понятие «духи» уже используется в современной теории поля. Можно сказать, что пока еще эти духи не материализованы, т. е. не наблюдаются на опыте. Но и наука о фундаментальных полях пока еще не завершена.

    Конечность распространения фундаментальных полей и их связь с энергией и импульсом (перенос энергии и импульса этими полями) приводят к признанию этих полей в качестве одной из составляющих материи. Материя, таким образом, представлена частицами (веществом) и фундаментальными полями.

    • Какой смысл заложен в понятия «фундаментальные поля» и «фундаментальные взаимодействия»?
    • Приведите примеры полей, не являющихся фундаментальными.
    • Подумайте и приведите примеры нефундаментальных взаимодействий.

    Поле - одна из форм существования материи и, пожалуй, самая важная. Понятие «поле» отражает тот факт, что электрические и магнитные силы действуют с конечной скоростью на расстоянии, взаимно и непрерывно порождая друг друга. Поле излучается, распространяется с конечной скоростью в пространстве, взаимодействует с веществом. Фарадей сформулировал идеи поля как новой формы материи, а записи вложил в запечатанный конверт, завещав вскрыть его после своей смерти (этот конверт был обнаружен только в 1938 г.). Фарадей использовал (1840) идею всеобщего сохранения и превращения энергии, хотя сам закон еще не был открыт.

    В лекциях (1845) Фарадей говорил не только об эквивалентных превращениях энергии из одной формы в другую, но и о том, что он давно пытался «открыть прямую связь между светом и электричеством» и что «удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию». Ему принадлежит методика изучения пространства вокруг заряженного тела с помощью пробных тел, введение для изображения поля силовых линий. Он описал свои опыты по вращению плоскости поляризации света магнитным полем. Изучение взаимосвязи электрических и магнитных свойств веществ привело Фарадея не только к открытию пара- и диамагнетизма, но и к установлению фундаментальной идеи - идеи поля. Он писал (1852): «Среда или пространство, его окружающие, играют столь же существенную роль, как и сам магнит, будучи частью настоящей и полной магнитной системы».

    Фарадей показал, что электродвижущая сила индукции Е возникает при изменении магнитного потока Ф (размыкании, замыкании, изменении тока в проводниках, приближении или удалении магнита и пр.). Максвелл выразил этот факт равенством: Е = -д Ф /дt. По Фарадею, способность индуцировать токи проявляется по окружности вокруг магнитной равнодействующей. Согласно Максвеллу, переменное магнитное поле окружено вихревым электрическим полем, а знак минус связан с правилом Ленца: возникает индукционный ток такого направления, чтобы препятствовать изменению, порождающему его. Обозначение rot - от англ. rotor - вихрь. В 1846 г. Ф. Нейман нашел, что на создание индукционного тока надо затратить определенное количество энергии.

    В целом система уравнений, записанная Максвеллом в векторной форме, имеет компактный вид:

    Входящие в эти уравнения векторы электрической и магнитной индукции (D и В) и векторы напряженности электрического и магнитного полей (Е и Н) связаны указанными простыми соотношениями с диэлектрической постоянной е и магнитной проницаемостью среды μ. Использование этой операции означает, что вектор напряженности магнитного поля вращается вокруг вектора тока плотности j .


    Согласно уравнению (1), любой ток вызывает возникновение магнитного поля в окружающем пространстве, постоянный ток - постоянное магнитное поле. Такое поле не может вызвать в «следующих» областях электрическое поле, так как, по уравнению (2), только изменяющееся магнитное поле порождает ток. Вокруг переменного тока создается и переменное магнитное поле, способное создать в «следующем» элементе пространства электрическое поле волны, волны незатухающей, - энергия магнитного поля в пустоте полностью переходит в энергию электрического, и наоборот. Поскольку свет распространяется в виде поперечных волн, можно сделать два вывода: свет - электромагнитное возмущение; электромагнитное поле распространяется в пространстве в виде поперечных волн со скоростью с = 3 10 8 м/с, зависящей от свойств среды, и поэтому невозможно «мгновенное дальнодействие». Итак, в световых волнах колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство, которое находится в состоянии напряжения. А оно за счет тока смещения создаст новое магнитное поле и так до бесконечности.

    Смысл уравнений (3) и (4) понятен - (3) описывает электростатическую теорему Гаусса и обобщает закон Кулона, (4) отражает факт отсутствия магнитных зарядов. Дивергенция (от лат. divergere - обнаруживать расхождение) есть мера источника. Если в стекле, например, не рождаются световые лучи, а только проходят сквозь него, divD = 0. Солнце как источник света и теплоты обладает положительной дивергенцией, а темнота - отрицательной. Поэтому силовые линии электрического поля кончаются на зарядах, плотность которых р, а магнитного - замкнуты сами на себя и нигде не кончаются.

    Система взглядов, которая легла в основу уравнений Максвелла, получила название максвелловской теории электромагнитного поля. Хотя эти уравнения имеют простой вид, но чем больше Максвелл и его последователи работали над ними, тем более глубокий смысл открывался им. Г. Герц, опыты которого явились первым прямым доказательством верности теории электромагнитного поля Фарадея-Максвелла, писал о неисчерпаемости уравнений Максвелла: «Нельзя изучать эту удивительную теорию, не испытывая по временам такого чувства, будто математические формулы живут собственной жизнью, обладают собственным разумом - кажется, что эти формулы умнее нас, умнее даже самого автора, как будто они дают нам больше, чем в свое время было в них заложено».

    Процесс распространения поля будет продолжаться до бесконечности в виде незатухающей волны - энергия магнитного поля в пустоте полностью переходит в энергию электрического, и наоборот. Среди постоянных, входящих в уравнения, была константа с; Максвелл нашел, что ее значение равнялось точно значению скорости света. На это совпадение нельзя было не обратить внимания. Итак, в световых волнах колебания совершают напряженности электрического и магнитного полей, а носителем волны служит само пространство, которое находится в состоянии напряжения.

    Световая волна - это волна электромагнитная, «бегущая в пространстве и отделенная от испустивших ее зарядов», как выразился Вайскопф. Открытие Максвелла он сравнил по важности с открытием закона тяготения Ньютона. Ньютон связал движение планет с тяготением на Земле и открыл фундаментальные законы, управляющие механическим движением масс под действием сил. Максвелл связал оптику с электричеством и вывел фундаментальные законы (уравнения Максвелла), управляющие поведением электрических и магнитных полей и их взаимодействием с зарядами и магнитами. Труды Ньютона привели к введению понятия всеобщего закона тяготения, труды Максвелла - понятия электромагнитного поля и к установлению законов его распространения. Если электромагнитное поле может существовать независимо от материального носителя, то дальнодействие должно уступить место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Идеи тока смещения (1861), электромагнитных волн и электромагнитной природы света (1865) были настолько смелыми и необычными, что даже следующее поколение физиков не сразу приняло теорию Максвелла. В 1888 г. Г. Герц открыл электромагнитные волны, но такого активного противника теории Максвелла, как У. Томсон (Кельвин), смогли убедить лишь эксперименты П.Н.Лебедева, открывшего в 1889 г. существование светового давления.

    В середине XIX в. Максвелл объединил электричество и магнетизм в единой теории поля. Электрический заряд связан с элементарными частицами, из которых самые известные - электрон и протон - имеют одинаковый по величине заряд е, это универсальная постоянная природы. В СИ = 1,6 10 -19 Кл. Хотя магнитных зарядов пока не обнаружено, в теории они уже возникают. По мнению физика Дирака, величина магнитных зарядов должна быть кратной заряду электрона

    Дальнейшие исследования в области электромагнитного поля привели к противоречиям с представлениями классической механики, которые пытался устранить путем математического согласования теорий голландский физик X.А. Лоренц. Он ввел преобразования координат инерциальных систем, которые в отличие от классических преобразований Галилея содержали константу - скорость света, которая и осуществляла связь с теорией поля. Изменились масштабы времени и длин при скоростях, близких к скорости света. Физический смысл этих преобразований Лоренца был объяснен только А. Эйнштейном в 1905 г. в его работе «К электродинамике движущихся тел», составившей основу специальной теории относительности (СТО), или релятивистской механики.

    Естествознание не только выделяет типы материальных объектов во Вселенной, но и раскрывает связи между ними. Связь между объектами в целостной системе более упорядочена, более устойчива, чем связь каждого из элементов с элементами из внешней среды. Чтобы разрушить систему, выделить из системы тот или иной элемент, нужно приложить к ней определенную энергию. Эта энергия имеет разную величину и зависит от типа взаимодействия между элементами системы. В мегамире эти взаимодействия обеспечиваются гравитацией, в макромире к гравитации добавляется электромагнитное взаимодействие, и оно становится основным, как более сильное. В микромире на размерах атома проявляется еще более сильное ядерное взаимодействие, обеспечивающее целостность атомных ядер. При переходе к элементарным частицам энергия внутренних связей знаем, что природные вещества - это химические соединения элементов, построенных из атомов и собранных в Периодическую таблицу. Некоторое время считали, что атомы и есть элементарные кирпичики мироздания, но потом установили, что атом представляет собой «целую Вселенную» и состоит из взаимодействующих друг с другом еще более фундаментальных частиц: протонов, электронов, нейтронов, мезонов и т.д. Число частиц, претендующих на элементарность, увеличивается, но так ли уж они элементарны?

    Механика Ньютона была признана, но происхождение сил, которые вызывают ускорения, в ней не обсуждались. Силы гравитации действуют через пустоту, они дальнодействующие, тогда как силы электромагнитные - через среду. В настоящее время все взаимодействия в природе сводят к четырем типам: гравитационные, электромагнитные, сильные ядерные и слабые ядерные.

    Гравитация (от лат. gravitas - тяжесть) - исторически первое исследованное взаимодействие. Вслед за Аристотелем считали, что все тела стремятся в «своему месту» (тяжелые - вниз, к Земле, легкие - вверх). Физике XVII-XVIII вв. были известны только гравитационные взаимодействия. По Ньютону, две точечные массы притягивают друг друга с силой, направленной вдоль соединяющей их прямой: Знак минус указывает на то, что мы имеем дело с притяжением, r - расстояние между телами (считается, что размер тел намного меньше r), т 1 и т 2 - массы тел. Величина G - универсальная постоянная, определяющая значение гравитационных сил. Если тела массой по 1 кг находятся на расстоянии 1 м друг от друга, то сила притяжения между ними равна 6,67 10 -11 н. Гравитация универсальна, все тела подвержены ей и даже сама частица - источник гравитации. Если бы величина G была больше, то увеличилась бы и сила, но G очень мала, и гравитационное взаимодействие в мире субатомных частиц несущественно, а между макроскопическими телами еле заметно. Кэвендиш сумел измерить величину G, пользуясь крутильными весами. Универсальность постоянной G означает, что в любом месте Вселенной и в любой момент времени сила притяжения между телами массой по 1 кг, разделенными расстоянием 1 м, будет иметь то же значение. Поэтому можно говорить, что величина G определяет структуру гравитирующих систем. Гравитация, или тяготение, не очень существенна при взаимодействии между малыми частицами, но она удерживает планеты, всю Солнечную систему и галактики. Мы постоянно ощущаем гравитацию в нашей жизни. Закон утвердил дальнодействующую природу силы тяготения и основное свойство гравитационного взаимодействия - его универсальность.

    Теория тяготения Эйнштейна (ОТО) дает отличающиеся результаты от закона Ньютона в сильных гравитационных полях, в слабых - обе теории совпадают. Согласно ОТО, гравитация - это проявление искривления пространства-времени. Тела движутся по искривленным траекториям не потому, что на них действует гравитация, а потому, что они движутся в искривленном пространстве-времени. Движутся «кратчайшим путем, и тяготение - это геометрия». Влияние искривления пространства-времени можно обнаружить не только вблизи коллапсирующих объектов типа нейтронных звезд или черных дыр. Таковы, например, прецессия орбиты Меркурия или замедление времени на поверхности Земли (см. рис. 2.3, в). Эйнштейн показал, что гравитацию можно описывать как эквивалент ускоренного движения.

    Чтобы избежать сжатия Вселенной под влиянием самогравитации и обеспечить ее стационарность, он ввел возможный источник гравитации с необычными свойствами, ведущий к «расталкиванию» материи, а не к концентрации ее, а сила отталкивания возрастает с увеличением расстояния. Но эти свойства могут проявляться только в очень больших масштабах Вселенной. Сила отталкивания неимоверно мала и не зависит от отталкивающей массы; ее представляют в виде где т - масса отталкиваемого объекта; r - его расстояние от отталкивающего тела; L - константа. В настоящее время устанавливают верхний предел для L = 10 -53 м -2 , т.е. для двух тел массой по 1 кг, находящихся на расстоянии 1 м, сила притяжения превышает космическое отталкивание, по крайней мере в 10 25 раз. Если две галактики с массами 10 41 кг находятся на расстоянии 10 млн св. лет (около 10 22 м), то для них силы притяжения примерно уравновешивались бы силами отталкивания, если величина L действительно близка к указанному верхнему пределу. Эта величина не измерена до сих пор, хотя и важна для крупномасштабной структуры Вселенной как фундаментальная.

    Электромагнитное взаимодействие, обусловленное электрическими и магнитными зарядами, переносится фотонами. Силы взаимодействия между зарядами сложным образом зависят от положения и движения зарядов. Если два заряда q 1 и q 2 неподвижны и сосредоточены в точках на расстоянии r, то взаимодействие между ними электрическое и определяется законом Кулона: В зависимости от знаков зарядов q 1 и q 2 сила электрического взаимодействия, направленная вдоль прямой, соединяющей заряды, будет силой притяжения или отталкивания. Здесь через обозначена постоянная, определяющая интенсивность электростатического взаимодействия, ее значение равно 8,85 10 -12 Ф/м. Так, два заряда по 1 Кл, разнесенные на 1 м, будут испытывать силу 8,99 10 9 Н. Электрический заряд всегда связан с элементарными частицами. Численная величина заряда наиболее известных среди них - протона и электрона - одинакова: это универсальная постоянная е = 1,6 10 -19 Кл. Заряд протона считается положительным, электрона - отрицательным.

    Магнитные силы порождаются электрическими токами - движением электрических зарядов. Существуют попытки объединить теории с учетом симметрий, в которых предсказывается существование магнитных зарядов (магнитных монополей), но они пока не обнаружены. Поэтому величина е определяет и интенсивность магнитного взаимодействия. Если электрические заряды движутся с ускорением, то они излучают - отдают энергию в виде света, радиоволн или рентгеновских лучей в зависимости от диапазона частот. Почти все носители информации, воспринимаемые нашими органами чувств, имеют электромагнитную природу, хотя и проявляются подчас в сложных формах. Электромагнитные взаимодействия определяют структуру и поведение атомов, удерживают атомы от распада, отвечают за связи между молекулами, т. е. за химические и биологические явления.

    Гравитация и электромагнетизм - дальнодействующие силы, распространяющиеся на всю Вселенную.

    Сильные и слабые ядерные взаимодействия - короткодействующие и проявляются только в пределах размеров атомного ядра, т. е. в областях порядка 10 -14 м.

    Слабое ядерное взаимодействие ответственно за многие процессы, обуславливающие некоторые виды ядерных распадов элементарных частиц (например, (3-распад - превращение нейтронов в протоны) с радиусом действия почти точечным: около 10 -18 м. Оно сильнее сказывается на превращениях частиц, чем на их движении, поэтому его эффективность определяют постоянной, связанной со скоростью распада, - универсальной постоянной связи g(W), определяющей скорость протекании процессов типа распада нейтрона. Слабое ядерное взаимодействие осуществляют так называемые слабые бозоны, и одни субатомные частицы могут превращаться в другие. Открытие нестабильных субъядерных частиц обнаружило, что слабое взаимодействие вызывает множество превращений. Сверхновые звезды - один из немногих случаев наблюдаемого слабого взаимодействия.

    Сильное ядерное взаимодействие препятствует распаду атомных ядер, и не будь его, ядра распались бы из-за сил электрического отталкивания протонов. В ряде случаев для его характеристики вводят величину g(S), аналогичную электрическому заряду, но намного большую. Сильное взаимодействие, осуществляемое глюонами, резко спадает до нуля за пределами области радиусом около 10 -15 м. Оно связывает между собой кварки, входящие в состав протонов, нейтронов и других подобных частиц, именуемых адронами. Говорят, что взаимодействие протонов и нейтронов есть отражение их внутренних взаимодействий, но пока картина этих глубинных явлений скрыта от нас. С ним связаны энергия, выделяемая Солнцем и звездами, превращения в ядерных реакторах и освобождение энергии. Перечисленные типы взаимодействий имеют, видимо, разную природу. К настоящему времени не ясно, исчерпываются ли ими все взаимодействия в природе. Самое сильное - короткодействующее сильное взаимодействие, электромагнитное слабее его на 2 порядка, слабое - на 14 порядков, а гравитационное меньше сильного на 39 порядков. В соответствии с величиной сил взаимодействия они происходят за разное время. Сильные ядерные взаимодействия возникают при столкновении частиц с околосветовыми скоростями. Время реакций, определяемое делением радиуса действия сил на скорость света, дает величину порядка 10 -23 с. Процессы слабого взаимодействия происходят за 10 -9 с, а гравитационные - порядка 10 16 с, или 300 млн лет.

    «Закон обратных квадратов», по которому действуют друг на друга точечные гравитационные массы или электрические заряды, следует, как показал П.Эренфест, из трехмерности пространства (1917). В пространстве п измерений точечные частицы взаимодействовали бы по закону обратной степени (n - 1). Для п = 3 справедлив закон обратных квадратов, так как 3 - 1 = 2. А при и = 4, что соответствует закону обратных кубов, планеты двигались бы по спиралям и быстро упали на Солнце. В атомах при числе измерений больше трех также не существовало бы устойчивых орбит, т. е. не было бы химических процессов и жизни. На связь трехмерности пространства с законом тяготения указывал еще и Кант.

    Кроме того, можно показать, что распространение волн в чистом виде невозможно в пространстве с четным числом измерений - появляются искажения, нарушающие переносимую волной структуру (информацию). Пример тому - распространение волны по резиновому покрытию (по поверхности размерности п = 2). В 1955 г. математик Г. Дж. Уитроу заключил, что поскольку живым организмам необходимы передача и обработка информации, то высшие формы жизни не могут существовать в пространствах четной размерности. Этот вывод относится к известным нам формам жизни и законам природы и не исключает существования иных миров, иной природы.

    От Ньютона и П.Лапласа сохранилось рассмотрение механики как универсальной физической теории. В XIX в. это место заняла механическая картина мира, включающая механику, термодинамику и кинетическую теорию материи, упругую теорию света и электромагнетизм. Открытие электрона стимулировало пересмотр представлений. В конце века Х.Лоренц построил свою электронную теорию для охвата всех явлений природы, но этого не достиг. Проблемы, связанные с дискретностью заряда и непрерывностью поля, и проблемы в теории излучения («ультрафиолетовая катастрофа») привели к созданию квантово-полевой картины мира и квантовой механики. После создания СТО ожидалось, что всеобщий охват мира природы способна дать электромагнитная картина мира, соединявшая теорию относительности, теорию Максвелла и механику, но и эта иллюзия вскоре была развеяна.

    Многие теоретики пытались едиными уравнениями охватить гравитацию и электромагнетизм. Под влиянием Эйнштейна, который ввел четырехмерное пространство-время, строились многомерные теории поля в попытках свести явления к геометрическим свойствам пространства.

    Объединение осуществилось на основе установленной независимости скорости света для разных наблюдателей, движущихся в пустом пространстве при отсутствии внешних сил. Эйнштейн изобразил мировую линию объекта на плоскости, где пространственная ось направлена горизонтально, а временная - вертикально. Тогда вертикальная прямая - это мировая линия объекта, который покоится в данной системе отсчета, а наклонная - объекта, движущегося с постоянной скоростью. Кривая мировая линия соответствует движению объекта с ускорением. Любая точка на этой плоскости отвечает положению в данном месте в данное время и называется событием. Гравитация при этом уже не сила, действующая на пассивном фоне пространства и времени, а представляет собой искажение самого пространства-времени. Ведь гравитационное поле - это «кривизна» пространства-времени.

    Для установления связи между системами отсчета, движущимися относительно друг друга, нужно измерять пространственные интервалы в тех же единицах, что и временные. Множителем для такого пересчета может служить скорость света, связывающая расстояние с временем, за которое свет может это расстояние преодолеть. В такой системе 1 м равен 3,33 не (1 не = 10 -9 с). Тогда мировая линия фотона пройдет под углом 45°, а любого материального объекта - под меньшим углом (так как скорость у него всегда меньше скорости света). Поскольку пространственная ось соответствует трем декартовым осям, то мировые линии материальных тел будут находиться внутри конуса, описываемого мировой линией фотона. Результаты наблюдений солнечного затмения 1919 г. принесли всемирную славу Эйнштейну. Смещения звезд, которые можно увидеть в окрестности Солнца только во время затмения, совпали с предсказаниями теории тяготения Эйнштейна. Так что его геометрический подход к построению теории тяготения был подтвержден впечатляющими экспериментами.

    В том же 1919 г., когда появилась ОТО, приват-доцент Кенигсбергского университета Т. Калуца отправил Эйнштейну свою работу, где предлагал пятое измерение. Пытаясь найти первооснову всех взаимодействий (тогда было известно два - тяготение и электромагнетизм), Калуца показал, что они могут быть выведены единообразно в пятимерной ОТО. Для успеха объединения не имели значения размеры пятого измерения и, может быть, они столь малы, что их не удается обнаружить. Только после двухгодичной переписки с Эйнштейном статью опубликовали. Шведский физик О. Клейн предложил модификацию основного уравнения квантовой механики с пятью переменными вместо четырех (1926). Неощущаемые нами измерения пространства он «свернул» до очень малых размеров (приведя пример небрежно брошенного поливального шланга, который издалека кажется извилистой линией, а вблизи каждая его точка оказывается окружностью). Размеры этих своеобразных петелек 10 20 раз меньше размера атомного ядра. Поэтому пятое измерение и не наблюдаемо, но возможно.

    В развитие пятимерной теории внесли свой вклад советские ученые Г.А. Мандель и В.А. Фок. Они показали, что траектория заряженной частицы в пятимерном пространстве может быть строго описана как геодезическая линия (от греч. geodaisia - землеразделение), или кратчайший путь между двумя точками на поверхности, т. е. пятое измерение может быть физически реальным. Оно не обнаружено из-за соотношения неопределенности Гейзенберга, которое каждую частицу представляет в виде волнового пакета, занимающего в пространстве область, размер которой зависит от энергии частицы (чем больше энергия, тем меньше объем области). Если пятое измерение свернуто в малую окружность, то, чтобы ее обнаружить, освещающие ее частицы должны обладать большой энергией. Ускорители дают пучки частиц, обеспечивающие разрешающую способность 10 -18 м. Поэтому, если окружность в пятом измерении имеет меньшие размеры, ее пока нельзя обнаружить.

    Советский профессор Ю.Б. Румер в своей пятимерной теории показал, что пятому измерению можно придать смысл действия. Тут же появились попытки представить наглядно это пятимерное пространство, как ранее четырехмерное пространство-время, введенное Эйнштейном. Одна из таких попыток - гипотеза о существовании «параллельных» миров. Четырехмерное изображение мяча представить было несложно: это совокупность его изображений в каждой временной точке - «труба» из мячей, которая тянется из прошлого в будущее. А пятимерный мяч - это уже поле, плоскость из абсолютно одинаковых миров. Во всех мирах, имеющих от трех до пяти измерений, даже одна причина, хотя бы случайная, может породить несколько следствий. Шестимерная Вселенная, построенная выдающимся советским авиаконструктором Л.Р. Бартини, включает три пространственных измерения и три временных. У Бартини длина времени - длительность, ширина - количество вариантов, высота - скорость времени в каждом из возможных миров.

    Теория квантовой гравитации должна была соединить ОТО и квантовую механику. Во Вселенной, подчиненной законам квантовой гравитации, кривизна пространства-времени и его структура должны флуктуировать, квантовый мир никогда не находится в покое. И понятия прошлого и будущего, последовательность событий в таком мире тоже должны быть иными. Эти изменения пока не обнаружены, так как квантовые эффекты проявляются в исключительно малых масштабах.

    В 50-е гг. XX в. Р.Фейнман, Ю.Швингер и С.Томогава независимо друг от друга создали квантовую электродинамику, связав квантовую механику с релятивистскими представлениями и объяснив многие эффекты, полученные при исследовании атомов и их излучений. Затем была разработана теория слабых взаимодействий, и показано, что электромагнетизм можно объединить математически только со слабым взаимодействием. Один из ее авторов, пакистанский физик-теоретик А. Салам, писал: «Секрет достижения Эйнштейна состоит в том, что он осознал фундаментальное значение заряда в гравитационном взаимодействии. И пока мы не поймем природу зарядов в электромагнитных, слабых и сильных взаимодействиях так же глубоко, как это сделал Эйнштейн для тяготения, надежды на успех в окончательной унификации мало... Мы хотели бы не только продолжить попытки Эйнштейна, в которых ему не удалось преуспеть, но и включить в эту программу остальные заряды».

    Возродился интерес к многомерным теориям, и вновь стали обращаться к работам Эйнштейна, Бергмана, Калуцы, Румера, Йордана. В работах советских физиков (Л.Д.Ландау, И.Я.Померанчук, Е.С.Фрадкин) показано, что при расстояниях 10 -33 см в квантовой электродинамике появляются неустранимые противоречия (расходимости, аномалии, все заряды обращаются в нуль). Многие ученые работали над идеями создания единой теории. С. Вайнберг, А. Салам и Ш. Глэшоу показали, что электромагнетизм и слабое ядерное взаимодействие можно считать проявлением некоей «электрослабой» силы и что истинные носители сильного взаимодействия - кварки. Созданная теория - квантовая хромодинамика - построила протоны и нейтроны из кварков и сформировала так называемую стандартную модель элементарных частиц.

    Еще Планк отметил фундаментальную роль величин, составленных из трех констант, определяющих основные теории, - СТО (скорости света с), квантовую механику (постоянной Планка h) и теорию тяготения Ньютона (гравитационной постоянной G). Из их комбинации можно получить три величины (планковские) с

    размерностями массы, времени и длины

    5 10 93 г/см 3 . Планковская длина совпадает с критическим расстоянием, на котором теряет смысл квантовая электродинамика. Сейчас определена геометрия лишь на расстояниях более 10 - 16 см, которые больше планковских на 17 порядков величины! Объединение взаимодействий нужно для устранения в теории расхо-димостей и аномалий - проблему составляло определение частиц как точек и искажение ими пространства-времени. И его стали искать с помощью идей более высоких симметрий. Эти идеи получили «второе дыхание» в 80-е гг. XX в. в теориях великого объединения ТВО и супергравитации. ТВО - это теория, позволяющая объединить все взаимодействия, кроме гравитационного. Если удастся объединить с ней и гравитационное взаимодействие, то получится Теория Всего Сущего (ТВС). Тогда мир будет описываться единообразно. Поиск такой «суперсилы» продолжается.

    Теории супергравитациииспользуют многомерные построения, свойственные геометрическому подходу при построении ОТО. Можно построить мир из разного числа измерений (используют 11- и 26-мерные модели), но 11-мерные наиболее интересны и красивы с математической точки зрения: 7 - минимальное число скрытых измерений пространства-времени, которые допускают включение в теорию трех негравитационных сил, а 4 - обычные измерения пространства-времени. Четыре известных взаимодействия рассматривают как геометрические конструкции, имеющие более пяти измерений.

    Теория суперструнразрабатывается с середины 80-х гг. XX в. наряду с супергравитацией. Эту теорию начали развивать английский ученый М. Грин и американский ученый Дж. Шварц. Они сопоставили частицам вместо точки одномерную струну, помещенную в многомерное пространство. Эта теория, заменив точечные частицы крошечными энергетическими петлями, устранила абсурдности, возникающие при расчетах. Космические струны - это экзотические невидимые образования, порожденные теорией элементарных частиц. В этой теории отражена иерархичность понимания мира - возможность того, что не существует окончательного основания для физической реальности, а есть только последовательность все меньших и меньших частиц. Существуют и очень массивные частицы, и около тысячи частиц без массы. У каждой струны, имеющей планковский размер (10 -33 см), при этом может быть бесконечно много типов (или мод) колебаний. Как вибрация струн скрипки порождает различные звуки, так и вибрация этих струн может генерировать все силы и частицы. Суперструны позволяют понять киральность (от греч. cheir - рука), тогда как супергравитация не может объяснить разницы между левым и правым - в ней поровну частиц каждой направленности. Теория суперструн, как и супергравитации, связана не с опытом, а с более характерным для математики устранением аномалий и расходимостей.

    Американский физик Э. Виттен заключил, что теория суперструн - основная надежда на будущее физики, она не только учитывает возможность силы тяжести, но и утверждает ее существование, и тяжесть - есть следствие теории суперструн. Его технология, заимствованная из топологии и теории квантового поля, позволяет открывать глубокие симметрии между запутанными узлами высокой мерности. Была зафиксирована размерность, соответствующая относительно непротиворечивой теории, она равна 506.

    С помощью теории суперструн можно объяснить «клочковатость» распределения вещества во Вселенной. Суперструны - это нити, оставшиеся от вещества только что родившейся Вселенной. Они невероятно подвижны и плотны, искривляют пространство вокруг себя, образуют клубки и петли, причем массивные петли могли бы создавать гравитационное притяжение, достаточно сильное, чтобы зарождались элементарные частицы, галактики и скопления галактик. К 1986 г. опубликовано много работ по космическим струнам, хотя сами они до сих пор не обнаружены. Найти суперструны считают возможным по искривлению пространства, которое они вызывают, действуя как гравитационная линза, или по испускаемым ими гравитационным волнам. Эволюцию суперструн разыгрывают на компьютерах, и на экране дисплея возникают картины, соответствующие наблюдаемым в космосе, - там тоже образуются волокна, слои и гигантские пустоты, в которых практически нет галактик.

    Это необычайное сближение космологии и физики элементарных частиц в последние 30 лет дало возможность разобраться в сути процессов рождения пространства-времени и вещества в коротком интервале от 10 -43 до 10 -35 с после первичной сингулярности, называемой Большим Взрывом. Число размерностей 10 (супергравитация) или 506 (теория суперструн) - не окончательно, могут появиться и более сложные геометрические образы, но непосредственному обнаружению множество дополнительных размерностей не доступно. Истинная геометрия Вселенной, вероятно, не имеет трех пространственных измерений, что характерно лишь для нашей Метагалактики - наблюдаемой части Вселено.

    И все они, кроме трех, в момент Большого Взрыва (10-15 млрд лет назад) свернулись до планковских размеров. На больших расстояниях (до размеров Метагалактики 10 28 см) геометрия евклидова и трехмерна, а на планковских - неевклидова и многомерна. Считают, что разрабатываемые сейчас Теории Всего Сущего (ТВС) должны объединить описания всех фундаментальных взаимодействий между частицами.

    Совпадение предмета исследований изменило сложившуюся методологию наук. Астрономия считалась наблюдательной наукой, а ускорители - инструментом в физике элементарных частиц. Теперь стали строить предположения о свойствах частиц и их взаимодействиях в космологии, и проверить их стало возможным уже для нынешнего поколения ученых. Так, из космологии следует, что число фундаментальных частиц должно быть невелико. Это предсказание относилось к анализу процессов первичного синтеза нуклонов, когда возраст Вселенной составлял около 1 с, и сделано оно было в то время, когда казалось, что достижение больших мощностей на ускорителях приведет к увеличению числа элементарных частиц. Если бы частиц было много, Вселенная была бы сейчас иной.