Организмы которые живут в наземно воздушной среде. Наземно-воздушная среда жизни, её характеристика

Слоистое строение оболочек Земли и состав атмосферы; световой режим как фактор наземно-воздушной среды; адаптации организмов к различным световым режимам; температурный режим в наземно-воздушной среде, температурные адаптации; загрязнения наземно-воздушной среды

Наземно-воздушная среда - самая сложная по экологическим условиям жизни. Жизнь на суше потребовала таких морфологических и биохимических приспособлений, которые оказались возможны лишь при достаточно высоком уровне организации как растений, так и животных. На рис. 2 изображена схема оболочек Земли. К наземновоздушной среде можно отнести наружную часть литосферы и нижнюю часть атмосферы. Атмосфера, в свою очередь, имеет довольно четко выраженное слоистое строение. Нижние слои атмосферы отображены на рис. 2. Поскольку основная масса живых существ обитает в тропосфере, именно этот слой атмосферы входит в понятие наземно-воздушной среды. Тропосфера - самая нижняя часть атмосферы. Высота ее в разных областях от 7 до 18 км, в ней содержится основная масса водяных паров, которые, конденсируясь, образуют облака. В тропосфере происходит мощное перемещение воздуха, и температура падает в 1 среднем на 0,6°С с поднятием на каждые 100 м.

Атмосфера Земли состоит из механической смеси газов, химически не действующих друг на друга. В ней происходят все метеорологические процессы, совокупность которых называется климатом. Верхней границей атмосферы условно считается 2000 км, т. е. ее высота составляет У 3 часть радиуса Земли. В атмосфере непрерывно протекают различные физические процессы: изменяются температура, влажность, происходит конденсация водяных паров, возникают туманы, облака, солнечные лучи нагревают атмосферу, ионизируя ее, и т. д.

Основная масса воздуха сосредоточена в слое 70 км. Сухой воздух содержит (в %): азота - 78,08; кислорода - 20,95; аргона - 0,93; углекислого газа - 0,03. Остальных газов очень мало. Это водород, неон, гелий, криптон, радон, ксенон - большинство инертных газов.

Воздух атмосферы является одним из основных жизненно важных элементов окружающей среды. Он надежно защищает планету от вредного космического излучения. Под воздействием атмосферы на Земле совершаются важнейшие геологические процессы, которые в конечном итоге формируют ландшафт.

Атмосферный воздух относится к категории неисчерпаемых ресурсов, но интенсивное развитие промышленности, рост городов, расширение исследований космического пространства усиливают отрицательное антропогенное воздействие на атмосферу. Поэтому вопрос охраны атмосферного воздуха становится все более актуальным.

Кроме воздуха определенного состава, на живые организмы, населяющие наземно-воздушную среду, воздействуют давление воздуха и влажность, а также солнечная радиация и температура.

Рис. 2.

Световой режим, или солнечная радиация. Для осуществления процессов жизнедеятельности всем живым организмам необходима энергия, поступающая извне. Основным ее источником является солнечная радиация.

Действие разных участков спектра солнечного излучения на живые организмы различно. Известно, что в спектре солнечных лучей выделяют ультрафиолетовую, видимую и инфракрасную области, которые, в свою очередь, состоят из световых волн разной длины (рис. 3).

Среди ультрафиолетовых лучей (УФЛ) до поверхности Земли доходят только длинноволновые (290-300 нм), а коротковолновые (менее 290 нм), губительные для всего живого, практически полностью поглощаются на высоте около 20-25 км озоновым экраном - тонким слоем атмосферы, содержащим молекулы 0 3 (см. рис. 2).


Рис. 3. Биологическое действие разных участков спектра солнечного излучения: 1 - денатурация белка; 2 - интенсивность фотосинтеза пшеницы; 3 - спектральная чувствительность глаза человека. Заштрихована область ультрафиолетового излучения, не проникающая

сквозь атмосферу

Длинноволновые ультрафиолетовые лучи (300-400 нм), обладающие большой энергией фотонов, имеют высокую химическую и мутагенную активность. Большие дозы их вредны для организмов.

В диапазоне 250-300 нм УФЛ оказывают мощное бактерицидное действие и вызывают у животных образование антирахитного витамина Д, т. е. в небольших дозах УФЛ необходимы человеку и животным. При длине 300-400 нм УФЛ вызывают у человека загар, который является защитной реакцией кожи.

Инфракрасные лучи (ИКЛ) с длиной волны более 750 нм оказывают тепловое действие, не воспринимаются глазом человека и обеспечивают тепловой режим планеты. Особенно важны эти лучи для холоднокровных животных (насекомых, пресмыкающихся), которые используют их для повышения температуры тела (бабочки, ящерицы, змеи) или для охоты (клещи, пауки, змеи).

В настоящее время изготовлено много приборов, в которых используется та или иная часть спектра: ультрафиолетовые облучатели, бытовые приборы с инфракрасным излучением для быстрого приготовления пищи и т. д.

Видимые лучи с длиной волны 400-750 нм имеют большое значение для всех живых организмов.

Свет как условие жизни растений. Свет совершенно необходим растениям. Зеленые растения используют солнечную энергию именно этой области спектра, улавливая ее в процессе фотосинтеза:

В связи с разной потребностью в световой энергии у растений возникают различные морфологические и физиологические адаптации к световому режиму обитания.

Адаптация - это системы регулирования обменных процессов и физиологических особенностей, обеспечивающих максимальную приспособленность организмов к условиям окружающей среды.

В соответствии с адаптациями к световому режиму растения делят на следующие экологические группы.

  • 1. Светолюбивые - имеющие следующие морфологические адаптации: сильноветвящиеся побеги с укороченными междоузлиями, розе- точные; листья мелкие или с сильно рассеченной листовой пластинкой, нередко с восковым налетом или опушением, часто повернуты ребром к свету (например, акация, мимоза, софора, василек, ковыль, сосна, тюльпан).
  • 2. Тенелюбивые - постоянно находящиеся в условиях сильного затенения. Листья у них темно-зеленого цвета, располагаются горизонтально. Это растения нижних ярусов лесов (например, грушанки, майник двулистный, папоротники и т. д.). При недостатке света живут глубоководные растения (красные и бурые водоросли).
  • 3. Теневыносливые - могут переносить затенение, но хорошо растут и на свету (например, лесные травы и кустарники, растущие и в затененных местах, и на опушках, а также дуб, бук, граб, ель).

По отношению к свету растения в лесу располагаются ярусами. Кроме того, даже у одного и того же дерева листья по-разному улавливают свет в зависимости от яруса. Как правило, они составляют листовую мозаику, т. е. располагаются таким образом, чтобы увеличить листовую поверхность для лучшего улавливания света.

Световой режим меняется в зависимости от географической широты, времени суток и времени года. В связи с вращением Земли световой режим имеет отчетливую суточную и сезонную ритмичность. Реакция организма на смену режима освещения называется фотопериодизмом. В связи с фотопериодизмом в организме изменяются процессы обмена веществ, роста и развития.

С фотопериодизмом у растений связано явление фототропизма - движение отдельных органов растения к свету. Например, движение корзинки подсолнуха в течение дня вслед за солнцем, раскрывание соцветий у одуванчика и вьюнка утром и закрывание их вечером, и наоборот - открывание вечером цветов ночной фиалки и душистого табака и закрывание их утром (суточный фотопериодизм).

Сезонный фотопериодизм наблюдается в широтах со сменой времен года (умеренные и северные широты). С наступлением длинного дня (весной) в растениях наблюдается активное сокодвижение, почки набухают и раскрываются. При наступлении осеннего короткого дня растения сбрасывают листву и готовятся к зимнему покою. Необходимо различать растения «короткого дня» - они распространены в субтропиках (хризантемы, перилла, рис, соя, дурнишник, конопля); и растения «длинного дня» (рудбекия, хлебные злаки, крестоцветные, укроп) - они распространены в основном в умеренных и приполярных широтах. Растения «длинного дня» не могут развиваться на юге (они не дают семян), то же относится и к растениям «короткого дня», если их выращивать на севере.

Свет как условие жизни животных. Для животных свет не является фактором первостепенного значения, как для зеленых растений, так как они существуют за счет энергии солнца, накопленной этими растениями. Тем не менее животным нужен свет определенного спектрального состава. В основном свет необходим им для зрительной ориентации в пространстве. Правда, не у всех животных есть глаза. У примитивных это просто фоточувствительные клетки или даже место в клетке (например, стигма у одноклеточных организмов или «светочувствительный глазок»).

Образное видение возможно только при достаточно сложном устройстве глаза. Например, пауки могут различать контуры движущихся предметов только на расстоянии 1-2 см. Глаза позвоночных воспринимают форму и размеры предметов, их цвет и определяют расстояние до них.

Видимый свет - это условное понятие для разных видов животных. Для человека это лучи от фиолетового до темно-красного (вспомним цвета радуги). Гремучие змеи, например, воспринимают инфракрасную часть спектра. Пчелы же различают многоцветье ультрафиолетовых лучей, но не воспринимают красных. Спектр видимого света для них сдвинут в ультрафиолетовую область.

Развитие органов зрения во многом зависит от экологической обстановки и условий среды обитания организмов. Так, у постоянных обитателей пещер, куда не проникает солнечный свет, глаза могут быть полностью или частично редуцированы: у слепых жужелиц, летучих мышей, некоторых амфибий и рыб.

Способность к цветовому зрению зависит также от того, дневной или ночной образ жизни ведут организмы. Собачьи, кошачьи, хомяки (которые питаются, охотясь в сумерках) все видят в черно-белом изображении. Такое же зрение и у ночных птиц - сов, козодоев. Дневные же птицы имеют хорошо развитое цветовое зрение.

У животных и птиц также существуют приспособления к дневному и ночному образу жизни. Например, большинство копытных, медведи, волки, орлы, жаворонки активны днем, тогда как тигры, мыши, ежи, совы наибольшую активность проявляют ночью. Продолжительность светового дня влияет на наступление брачного периода, миграций и перелетов у птиц, спячки у млекопитающих и т. д.

Животные ориентируются с помощью органов зрения во время дальних перелетов и миграций. Птицы, например, с поразительной точностью выбирают направление полета, преодолевая многие тысячи километров от гнездовий до мест зимовок. Доказано, что при таких дальних перелетах птицы хотя бы частично ориентируются по Солнцу и звездам, т. е. астрономическим источникам света. Они способны к навигации, изменению ориентации, чтобы попасть в нужную точку Земли. Если птиц перевозят в клетках, то они правильно выбирают направление на зимовку из любой точки Земли. В сплошной туман птицы не летают, так как в процессе полета часто сбиваются с пути.

Среди насекомых способность к такого рода ориентации развита у пчел. В качестве ориентира они используют положение (высоту) Солнца.

Температурный режим в наземно-воздушной среде. Температурные адаптации. Известно, что жизнь есть способ существования белковых тел, поэтому границы существования жизни - это температуры, при которых возможно нормальное строение и функционирование белков, в среднем от 0°С до +50°С. Однако некоторые организмы обладают специализированными ферментными системами и приспособлены к активному существованию при температурах, выходящих за указанные пределы.

Виды, предпочитающие холод (их называют криофилами ), могут сохранять активность клеток до -8°... -10°С. Переохлаждение способны выносить бактерии, грибы, лишайники, мхи, членистоногие. Наши деревья также не погибают при низких температурах. Важно только, чтобы в период подготовки к зиме вода в клетках растений перешла в особое состояние, а не превратилась в лед - тогда клетки погибают. Растения преодолевают переохлаждение, накапливая в своих клетках и тканях вещества - осмотики-протекторы: различные сахара, аминокислоты, спирты, которые «выкачивают» излишнюю воду, не давая ей превратиться в лед.

Существует группа видов организмов, оптимум жизни которых - высокие температуры, их называют термофилами. Это разнообразные черви, насекомые, клещи, обитающие в пустынях и жарких полупустынях, это бактерии горячих источников. Есть источники с температурой + 70°С, содержащие живых обитателей - сине-зеленые водоросли (цианобактерии), некоторые виды моллюсков.

Если же принимать во внимание и латентные (длительно покоящиеся) формы организмов, такие, как споры некоторых бактерий, цисты, споры и семена растений, то они могут выдерживать значительно отклоняющиеся от нормы температуры. Споры бактерий могут выдерживать нагревание до 180°С. Многие семена, пыльца растений, цисты, одноклеточные водоросли выдерживают замораживание в жидком азоте (при -195,8°С), а затем длительное хранение при -70°С. После размораживания и помещения в благоприятные условия и достаточную питательную среду эти клетки могут стать вновь активными и начать размножаться.

Временная приостановка всех жизненных процессов организма называется анабиозом. Анабиоз может наступать у животных как при понижении температуры среды, так и при ее повышении. Например, у змей и ящериц при повышении температуры воздуха выше 45°С наступает тепловое оцепенение. У земноводных при температуре воды ниже 4°С жизненная активность практически отсутствует. Из состояния анабиоза живые существа могут возвратиться к нормальной жизни только в том случае, если не нарушена структура макромолекул в их клетках (в первую очередь ДНК и белков).

Устойчивость к температурным колебаниям у наземных обитателей различна.

Температурные адаптации у растений. Растения, будучи организмами неподвижными, вынуждены приспосабливаться к тем температурным колебаниям, которые существуют в местах их обитания. Они обладают специфическими системами, предохраняющими от переохлаждения или перегрева. Транспирация - это система испарения воды растениями через устьичный аппарат, которая спасает их от перегрева. Некоторые растения приобрели даже устойчивость к пожарам - их называют пирофитами. Пожары часто бывают в саваннах, кустарниковых зарослях. У деревьев саванн толстая кора, пропитанная огнеупорными веществами. Плоды и семена их имеют толстые, одревесневшие покровы, которые растрескиваются, когда охвачены огнем, что помогает семенам попасть в землю.

Температурные адаптации животных. Животные, по сравнению с растениями, обладают большими возможностями приспосабливаться к изменению температуры, так как способны передвигаться, обладают мускулатурой и производят собственное внутреннее тепло. В зависимости от механизмов поддержания постоянной температуры тела различают пойкилотермных (холоднокровных) и гомойотермных (теплокровных) животных.

Пойкилотермные - это насекомые, рыбы, земноводные, пресмыкающиеся. Их температура тела меняется вместе с температурой окружающей среды.

Гомойотермные - животные с постоянной температурой тела, способные ее поддерживать даже при сильных колебаниях наружной температуры (это млекопитающие и птицы).

Основные пути температурных адаптаций:

  • 1) химическая терморегуляция - увеличение теплопродукции в ответ на понижение температуры окружающей среды;
  • 2) физическая терморегуляция - способность удерживать тепло благодаря волосяному и перьевому покровам, распределению жировых запасов, возможности испарительной теплоотдачи и т. п.;

3) поведенческая терморегуляция - способность перемещаться из мест крайних температур в места оптимальных температур. Это основной путь терморегуляции у пойкилотермных животных. При повышении или понижении температуры они стремятся изменить позу или спрятаться в тень, в нору. Пчелы, муравьи, термиты строят гнезда с хорошо регулируемой внутри них температурой.

У теплокровных система терморегуляции значительно усовершенствовалась (хотя она слаба у детенышей и птенцов).

Для иллюстрации совершенства терморегуляции у высших животных и человека можно привести такой пример. Около 200 лет назад доктор Ч. Блэгден в Англии поставил такой опыт: он вместе с друзьями и собакой провел 45 мин в сухой камере при +126°С без последствий для здоровья. Любители финской бани знают, что можно проводить в сауне с температурой более + 100°С некоторое время (для каждого - свое), и это полезно для здоровья. Но мы также знаем, что, если держать при такой температуре кусок мяса, он сварится.

При действии холода у теплокровных усиливаются окислительные процессы, особенно в мышцах. Вступает в действие химическая терморегуляция. Отмечается мышечная дрожь, приводящая к выделению дополнительного тепла. Особенно усиливается обмен липидов, так как в жирах содержится значительный запас химической энергии. Поэтому накопление жировых запасов обеспечивает лучшую терморегуляцию.

Усиленное производство теплопродукции сопровождается потреблением большого количества пищи. Так, птицам, остающимся на зиму, нужно много корма, им страшны не морозы, а бескормица. При хорошем урожае ели и сосны клесты, например, даже зимой выводят птенцов. У людей - жителей суровых сибирских или северных районов - из поколения в поколение вырабатывалось высококалорийное меню - традиционные пельмени и другая калорийная пища. Поэтому, прежде чем следовать модным западным диетам и отвергать пищу предков, нужно вспомнить о существующей в природе целесообразности, лежащей в основе многолетних традиций людей.

Эффективным механизмом регуляции теплообмена у животных, как и у растений, является испарение воды путем потоотделения или через слизистые оболочки рта и верхних дыхательных путей. Это пример физической терморегуляции. Человек при сильной жаре может выделить до 12 л пота в день, рассеивая при этом тепла в 10 раз больше нормы. Выделяемая вода частично должна возвращаться через питье.

Теплокровным животным, так же как и холоднокровным, свойственна поведенческая терморегуляция. В норах живущих под землей животных колебания температур тем меньше, чем глубже нора. В искусно построенных гнездах пчел поддерживается ровный, благоприятный микроклимат. Особый интерес представляет групповое поведение животных. Например, пингвины в сильный мороз и буран образуют «черепаху» - плотную кучу. Те, кто оказался с краю, постепенно пробираются внутрь, где поддерживается температура около +37°С. Там же, внутри, помещаются и детеныши.

Таким образом, для того чтобы жить и размножаться в определенных условиях наземно-воздушной среды, у животных и растений в процессе эволюции выработались самые разнообразные приспособления и системы соответствия этой среде обитания.

Загрязнения наземно-воздушной среды. В последнее время все более значительным внешним фактором, изменяющим наземно-возду- шую среду обитания, становится антропогенный фактор.

Атмосфера, как и биосфера, имеет свойство самоочищения, или сохранения равновесия. Однако объем и скорость современных загрязнений атмосферы превосходят природные возможности их обезвреживания.

Во-первых, это природное загрязнение - различная пыль: минеральная (продукты выветривания и разрушения горных пород), органическая (аэропланктон - бактерии, вирусы, пыльца растений) и космическая (частицы, попадающие в атмосферу из космоса).

Во-вторых, это искусственные (антропогенные) загрязнения - промышленные, транспортные и бытовые выбросы в атмосферу (пыль цементных заводов, сажа, различные газы, радиоактивное загрязнение, пестициды).

По приблизительным подсчетам, в атмосферу за последние 100 лет выброшено 1,5 млн т мышьяка; 1 млн т никеля; 1,35 млн т кремния, 900 тыс. т кобальта, 600 тыс. т цинка, столько же меди и других металлов.

Химические предприятия выбрасывают углекислый газ, окись железа, оксиды азота, хлор. Из пестицидов особенно токсичны фосфо- рорганические соединения, из которых в атмосфере получаются еще более токсичные.

В результате выбросов в городах, где снижено ультрафиолетовое излучение и наблюдается большое скопление людей, происходит деградация воздушного бассейна, одним из проявлений которой является смог.

Смог бывает «классический» (смесь токсичных туманов, возникающих при незначительной облачности) и «фотохимический » (смесь едких газов и аэрозолей, которая образуется без тумана в результате фотохимических реакций). Наиболее опасен лондонский и лос-анджелесский смог. Он поглощает до 25 % солнечного излучения и 80 % ультрафиолетовых лучей, от этого страдает городское население.

Наземно-воздушная среда является самой сложной для жизни организмов. Физические факторы, ее составляющие, очень разнообразны: свет, температура. Но организмы приспособились в ходе эволюции к этим меняющимся факторам и выработали системы адаптации для обеспечения чрезвычайной приспособленности к условиям обитания. Несмотря на неисчерпаемость воздуха как ресурса окружающей среды, качество его стремительно ухудшается. Загрязнение воздуха - самая опасная форма загрязнения окружающей среды.

Вопросы и задания для самоконтроля

  • 1. Объясните, почему наземно-воздушная среда является самой сложной для жизни организмов.
  • 2. Приведите примеры адаптаций у растений и животных к высоким и низким температурам.
  • 3. Почему температура оказывает сильное влияние на жизнедеятельность любых организмов?
  • 4. Проанализируйте, как свет влияет на жизнедеятельность растений и животных.
  • 5. Охарактеризуйте, что такое фотопериодизм.
  • 6. Докажите, что различные волны светового спектра по-разному воздействуют на живые организмы, приведите примеры. Перечислите, на какие группы подразделяются живые организмы по способу использования энергии, приведите примеры.
  • 7. Прокомментируйте, с чем связаны сезонные явления в природе и как на них реагируют растения и животные.
  • 8. Объясните, почему загрязнение наземно-воздушной среды представляет наибольшую опасность для живых организмов.

В процессе своего исторического развития живыми существами было освоено 4 среды обитания: водная, наземно-воздушная, почвенная и другие организмы. Каждая из них имеет характерные особенности, и невозможно сказать, какая более важна. Ознакомимся с особенностями наземно-воздушной среды обитания.

Определение

Наземно-воздушная среда обитания представляет собой биологическую среду проживания организмов, располагающуюся на поверхности суши и в низких атмосферных слоях.

Ее нельзя назвать первой из освоенных живыми организмами, поскольку жизнь зародилась в море. В ходе эволюционного развития существа выработали определенные приспособления, которые дали им возможность перебраться на сушу и в атмосферу.

Особенности

Важнейшей из экологических ниш является наземно-воздушная среда. Особенности среды таковы:

  • газообразность;
  • высокое содержание кислорода;
  • низкая влажность;
  • наличие давления и плотности.

Это формирует условия, в которых вынуждены проживать организмы. Также существенными особенностями наземно-воздушной среды обитания являются смена сезонов и времен года, колебания температуры, специфика светового дня, ветер. Чтобы жить здесь, живым организмам пришлось изменить свою анатомию, физиологию и поведение, что помогло им приспособиться. К числу наиболее важных (существенных) факторов среды относятся:

  • влажность;
  • температура.

Другие факторы оказывают на живые организмы гораздо меньшее влияние. Это давление и плотность.

Как приспособились животные?

Многие из известных науке видов животных обитают именно в наземно-воздушной среде. Особенности среды заставили их выработать несколько видов адаптации:

  • Наличие легких дает им возможность дышать воздухом.
  • Для перемещения по суше развитие получил скелет.

Чтобы нормально существовать в привычных нам условиях наземно-воздушной среды, представителям фауны пришлось пройти длительную эволюцию и выработать широкий комплекс адаптационных механизмов.

Как приспособились растения?

Большинство растений произрастают в наземно-воздушной среде. Особенности среды обусловили появление следующих механизмов адаптации:

  • Наличие корней, благодаря которым растения получают из почвы минеральные вещества и влагу.
  • Благодаря устьицам представители флоры получили возможность усваивать кислород непосредственно из воздуха.

Нередко растениям приходится выживать в условиях недостаточной влажности, поэтому флора пустынь и саванн выработала свои методы адаптации: длинный главный корень произрастает глубоко в почву, добывая влагу из подземных источников. Мелкие жесткие листья снижают испарения.

Какие еще особенности приспособления растений к наземно-воздушной среде выделяют исследователи?

В тундре произрастают карликовые деревья и кустарники, высота которых редко превышает человеческий рост. Условия здесь очень суровы: длительная зима (морозы более 7 месяцев в году), непродолжительное прохладное лето. Сильные ветры и почва, промерзшая настолько, что летом не успевает оттаять, - таковы особенности среды. И растения научились выживать в них. Отдельные виды могут пережить выпадение снега в состоянии цветения, другие отличаются мелкими листьями, что позволяет избежать испарения влаги.

Влияние факторов среды на особенности обитателей

Итак, существенные особенности наземно-воздушной среды оказали свое воздействие на строение и внешний вид обитателей. Информация о том, как тот или иной фактор отразился на растительном и животном мире, представлена в таблице.

Взаимодействие живых организмов и окружающей среды

Влияние на растения

Воздействие на животных

Плотность воздуха

Появление корней и механических тканей

Образование плотного скелета и развитие мускулатуры, способность многих видов к полету

Усложнение обменных процессов

Умение использовать легкие и трахеи

эдафические факторы среды (рельеф и состав грунта)

Корневая система зависит от особенностей почвы

Форма копыт зависит от того, является животное бегающим или прыгающим

Деревья сбрасывают на зиму листья

Животные стали теплокровными, в северных районах у них появился густой мех, весной линяют

Как видим, факторов среды, которые оказывают существенное влияние на жизнь ее обитателей, достаточно много. Поэтому и механизмов адаптации выработалось немалое количество.

Эдафические факторы

Рассмотрим, как еще растительные и животные организмы приспособились к особенностям почвы и рельефа. Прежде всего, у многих растений видоизменилась корневая система:

  • Произрастающие в условиях вечной мерзлоты деревья имеют разветвленную корневую систему, которая вглубь не уходит. Таковы лиственницы, березы, ели. Если эти же виды находятся в более мягком климате, то их корни глубже проникают вглубь грунта.
  • Представители флоры, растущие в засушливых условиях, имеют длинный корень, способный доставать влагу из глубины.
  • Если почва чрезмерно влажная, то у растений формируются пневматофоры - дыхательные корни.

Почва может иметь различный состав, поэтому на том или ином типе грунта способны произрастать конкретные виды:

  • Богатые азотом почвы предпочитают нитрофилы, например, пастушья сумка, крапива, лебеда пырей, белена.
  • Соленые почвы любят галофиты (лебеда скрученная, свекла, полынь).
  • На каменистых участках растут петрофиты (литофиты). Это камнеломки, можжевельники, сосны, колокольчики.
  • Сыпучие пески - благодатный грунт для псаммофитов: саксаулов, песчаных акаций, ив.

Итак, на растения оказывает влияние состав почвы. Для животных же наиболее важен характер грунта и рельеф. Так, для копытных необходим твердый грунт, позволяющий им отталкиваться во время бега и прыжков. Однако для норных зверей плотный грунт неудобен, поскольку мешает им строить убежища.

Животные также неплохо приспособились к эдафическим факторам наземно-воздушной среды. Прежде всего, у тех видов, которым приходится много бегать, развились мощные легкие конечности, у других развитые задние ноги и короткие передние дают возможность совершать прыжки, таковы зайцы и кенгуру.

Приспособление к полету

Птицы - одни из основных обитателей наземно-воздушной среды. Особенности среды обусловили появление следующих форм адаптации:

  • обтекаемая форма тела;
  • полые кости способствуют снижению веса «летуна»;
  • крылья помогают держаться в воздухе;
  • способность к полету имеют не только птицы, но и некоторые животные благодаря специальным перепонкам.

Все эти черты помогают представителям фауны взлетать и держаться в воздухе.

Приспособление организмов к меняющимся факторам среды

Основные особенности наземно-воздушной среды могут меняться. Так, в средней полосе зимой выпадает снег, а летом стоит зной. Именно поэтому живым организмам нередко приходится приспосабливаться к меняющимся условиям проживания. Такие механизмы адаптации также выработались в процессе эволюции.

Итак, растения могут развиваться только в благоприятных условиях, при достаточном свете и влаге. Именно поэтому сезон их роста - весна и лето. Зимой же наступает период отдыха. Питательные вещества, необходимые для выживания, накапливаются за лето в корнях, а листву деревья сбрасывают, поскольку сокращение светового дня ведет к невозможности образования в листьях питательных элементов.

Животные также выработали немало способов адаптации к меняющимся условиям среды:

  • Некоторые впадают в зимнюю спячку, предварительно накопив необходимый запас питательных веществ (медведи).
  • Перелетные птицы с наступлением холодов отправляются в жаркие страны, чтобы весной вернуться к гнездам и заняться выводом птенцов.
  • К зиме у многих жителей северных широт образуется плотный подшерсток, благодаря чему животное может без проблем переносить суровые морозы. Весной зверь линяет.

Благодаря таким механизмам становится понятно, как представители растительного и животного мира приспосабливаются к наземно-воздушной среде жизни. Особенности среды подвержены изменениям, поэтому меняется и внешний вид, и особенности поведения ее обитателей. Все эти механизмы - результат длительного эволюционного развития.

Мы рассмотрели существенные особенности одной из основных сред обитания - наземно-воздушной. Все живые организмы, которые проживают на поверхности почвы или в нижних слоях атмосферы, научились приспосабливаться к меняющимся особенностям среды.

ВОДНАЯ СРЕДА

Водная среда жизни (гидросфера) занимает 71 % площади земного шара. Более 98 % воды сосредоточено в морях и океанах, 1,24 % - льды полярных областей, 0.45 % - пресные воды рек, озер, болот.

В мировом океане различают две экологические области:

толщу воды – пелагиаль , и дно - бенталь .

В водной среде обитает примерно 150 000 видов животных, или около 7 % от их общего количества и 10 000 видов растений – 8%. Различают следующие экологические группы гидробионтов. Пелагиаль - заселена организмами подразделяющимися на нектон и планктон.

Нектон (нектос – плавающий)- это совокупность пелагических активно передвигающихся животных, не имеющих непосредственной связи с дном. В основном это крупные животные, способные преодолевать большие расстояния и сильные водные течения. Для них характерна обтекаемая форма тела и хорошо развитые органы движения (рыбы, кальмары, ластоногие, киты) В пресных водах к нектону кроме рыб относятся земноводные и активно перемещающиеся насекомые.

Планктон (блуждающий, парящий)- это совокупность пелагических организмов, не обладающих способностью к быстрым активным передвижениям. Подразделяются на фито- и зоопланктон (мелкие ракообразные, простейшие – фораминиферы, радиолярии; медузы, крылоногие моллюски). Фитопланктон – диатомовые и зеленые водоросли.

Нейстон – совокупность организмов, населяющих поверхностную пленку воды на границе с воздушной средой. Это личинки дясятиногих, усоногих, веслоногих ракообразных, брюхоногих и двустворчатых моллюсков, иглокожих, рыб. Проходя личиночную стадию, они покидают поверхностный слой, служивший им и убежищем, перемещаются жить на дно или пелагиаль.

Плейстон – это совокупность организмов, часть тела которых находится над поверхностью воды, а другая в воде - ряска, сифонофоры.

Бентос (глубина)- совокупность организмов, обитающих на дне водоемов. Подразделяется на фитобентос и зообентос. Фитобентос - водоросли – диатомовые, зеленые, бурые, красные и бактерии; у побережий цветковые растения – зостера, руппия. Зообентос – фораминиферы, губки, кишечнополостные, черви, моллюски, рыбы.

В жизни водных организмов большую роль играют вертикальное перемещение воды, плотность, температурный, световой, солевой, газовый (содержание кислорода и углекислого газа) режимы, концентрация водородных ионов (рН).

Температурный режим : Отличается в воде, во-первых, меньшим притоком тепла, во-вторых большей стабильностью, чем на суше. Часть тепловой энергии, поступающей на поверхность воды, отражается, часть расходуется на испарение. Испарение воды с поверхности водоемов, при котором затрачивается около 2263.8 Дж/г, препятствует перегреванию нижних слоев, а образование льда, при котором выделяется теплота плавления (333.48 Дж/г), замедляет их охлаждение. Изменение температуры в текущих водах следует за ее изменениями в окружающем воздухе, отличаясь меньшей амплитудой.

В озерах и прудах умеренных широт термический режим определяется хорошо известным физическим явлением – вода обладает максимальной плотностью при 4 о С. Вода в них четко делится на три слоя:

1. эпилимнион - верхний слой температура которого испытывает резкие сезонные колебания;

2. металимнион – переходный, слой температурного скачка, отмечается резкий перепад температур;

3. гиполимнион – глубоководный слой, доходящий до самого дна, где температура в течение года изменяется незначительно.

Летом наиболее теплые слои воды располагаются у поверхности, а холодные – у дна. Данный вид послойного распределения температур в водоеме называется прямая стратификация. Зимой, с понижением температуры, происходит обратная стратификация : поверхностный слой имеет температуру, близкую к 0 С, на дне температура около 4 С, что соответствует максимальной ее плотности. Таким образом, с глубиной температура повышается. Это явление, называемое температурной дихотомией, наблюдается в большинстве озер умеренной зоны летом и зимой. В результате температурной дихотомии нарушается вертикальная циркуляция – наступает период временного застоя – стагнация .

Веснойповерхностная вода вследствие нагревания до 4С становится более плотной и погружается вглубь, а на ее место с глубины поднимается более теплая вода. В результате такой вертикальной циркуляции в водоеме наступает гомотермия, т.е. на какое-то время температура всей водной массы выравнивается. С дальнейшим повышением температуры верхние слои становятся все менее плотными и уже не опускаются вниз – летняя стагнация. Осенью же поверхностный слой охлаждается становится более плотным и опускается вглубь, вытесняя на поверхность более теплую воду. Это происходит до наступления осенней гомотермии. При охлаждении поверхностных вод ниже 4С они становятся менее плотными и опять остаются на поверхности. В результате прекращается циркуляция воды и наступает зимняя стагнация.

Воде свойственна значительная плотность (в 800 раз) превосходит воздушную среду) и вязкость. В среднем в водной толще на каждые 10 м глубины давление возрастает на 1 атм. На растениях эти особенности сказываются в том, что у них очень слабо или вовсе не развивается механическая ткань, поэтому стебли их очень эластичны и легко изгибаются. Большинству водных растений присуща плавучесть и способность находиться в толще воды во взвешенном состоянии, у многих водных животных покровы смазываются слизью, уменьшающей трение при передвижении, а тело обретает обтекаемую форму. Многие обитатели относительно стенобатны и приурочены к определенным глубинам.

Прозрачность и световой режим. Особенно это сказывается на распространении растений: в мутных водоемах они обитают только в поверхностном слое. Световой режим обусловливается также закономерным убыванием света с глубиной из-за того, что вода поглощает солнечный свет. При этом лучи с разной длиной волны поглощаются неодинаково: быстрее всего красные, тогда как сине-зеленые проникают на значительные глубины. Цвет среды при этом меняется, постепенно переходя от зеленоватого до зеленого, голубого, синего, сине-фиолетового, сменяемого постоянным мраком. Соответственно этому с глубиной зеленые водоросли сменяются бурыми и красными, пигменты которых приспособлены к улавливанию солнечных лучей с разной длиной волны. С глубиной также закономерно меняется окраска животных. В поверхностных слоях воды обитают ярко и разнообразно окрашенные животные, тогда как глубоководные виды лишены пигментов. В сумречной обитают животные, окрашенные в цвета с красноватым оттенком, что помогает им скрываться от врагов, так как красный цвет в сине-фиолетовых лучах воспринимается как черный.

Поглощение света в воде тем сильнее, чем меньше ее прозрачность. Прозрачность характеризуется предельной глубиной, где еще виден специально опускаемый диск Секки (белый диск диаметром 20 см). Отсюда и границы зон фотосинтеза сильно колеблются в разных водоемах. В самых чистых водах зона фотосинтеза достигает глубины 200 м.

Соленость воды. Вода - прекрасный растворитель многих минеральных соединений. В результате природным водоемам свойствен определенный химический состав. Наибольшее значение имеют сульфаты, карбонаты, хлориды. Количество растворенных солей на 1 л воды в пресных водоемах не превышает 0,5 г, в морях и океанах - 35 г. Пресноводные растения и животные обитают в гипотонической среде, т.е. среде, в которой концентрация растворенных веществ ниже, чем в жидкостях тела и тканей. Из-за разницы в осмотическом давлении вне и внутри тела в организм постоянно проникает вода, и гидробионты пресных вод вынуждены интенсивно удалять ее. В связи с этим у них хорошо выражены процессы осморегуляции. У простейших это достигается работой выделительных вакуолей, у многоклеточных – удалением воды через выделительную систему. Типично морские и типично пресноводные видыне переносят значительных изменений солености воды -стеногалинные организмы. Эвригаллинные - пресноводный судак, лещ, щука, из морских - семейство кефалевых.

Газовый режим Основными газами в водной среде – кислород и углекислый газ.

Кислород - важнейший экологический фактор. Он поступает в воду из воздуха и выделяется растениями при фотосинтезе. Содержание его в воде обратно пропорционально температуре- с понижением температуры растворимость кислорода в воде (как и других газов) повышается. В слоях, сильно заселенных животными и бактериями, может создаваться дефицит кислорода из-за усиленного его потребления. Так, в мировом океане богатые жизнью глубины от 50 до 1000 м характеризуются резким ухудшением аэрации. Она в 7-10 раз ниже, чем в поверхностных водах населенных фитопланктоном. Около дна водоемов условия могут быть близкими к анаэробным.

Углекислый газ - растворяется в воде примерно в 35 раз лучше, чем кислород и концентрация его в воде в 700 раз больше, чем в атмосфере. Обеспечивает фотосинтез водных растений и участвует в формировании известковых скелетных образований беспозвоночных животных.

Концентрация водородных ионов (рН) – пресноводные бассейны с рН = 3,7-4,7 считаются кислыми, 6,95- 7,3 – нейтральными, с рН 7,8 – щелочными. В пресных водоемах рН испытывает даже суточные колебания. Морская вода более щелочная и ее рН значительно меньше изменяется, чем в пресной. С глубиной рН уменьшается. Концентрация водородных ионов играет большую роль в распределении гидробионтов.

Наземно-воздушная среда обитания

Особенностью наземно-воздушной среды жизни является то, что организмы, обитающие здесь, окружены газообразной средой, характеризующейся низкими влажностью, плотностью и давлением, высоким содержанием кислорода. Как правило, животные в этой среде передвигаются по почве (твердый субстрат), а растения укореняются в ней.

В наземно-воздушной среде действующие экологические факторы имеют ряд характерных особенностей: более высокая интенсивность света в сравнении с другими средами, значительные колебания температуры, изменение влажности в зависимости от географического положения, сезона и времени суток. Воздействие факторов, перечисленных выше, неразрывно связано с движением воздушных масс – ветра.

В процессе эволюции у живых организмов наземно-воздушной среды выработались характерные анатомо-морфологические, физиологические адаптации.

Рассмотрим особенности воздействия основных экологических факторов на растения и животных в наземно-воздушной среде.

Воздух. Воздух как экологический фактор характеризуется постоянством состава – кислорода в нем обычно около 21%, углекислого газа 0,03 %.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Все обитатели воздушной среды тесно связаны с поверхностью земли, служащей им для прикрепления и опоры. Плотность воздушной среды не оказывает высокого сопротивления организмам при их передвижении по поверхности земли, однако затрудняет перемещение по вертикали. Для большинства организмов пребывание в воздухе связано только с расселением или поиском добычи.

Малая подъемная сила воздуха определяет предельную массу и размеры наземных организмов. Самые крупные животные, обитающие на поверхности земли, меньше, чем гиганты водной среды. Крупные млекопитающиеся (размером и массой современного кита) не могли бы жить на суше, так как были бы раздавлены собственной тяжестью.

Малая плотность воздуха создает незначительную сопротивляемость передвижению. Экологические выгоды этого свойства воздушной среды использовали многие наземные животные в ходе эволюции, приобретя способность к полету. К активному полету способны 75 % видов всех наземных животных, преимущественно насекомые и птицы, но встречаются летуны и среди млекопитающих и рептилий.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным передвижениям воздушных масс возможен пассивный полет ряда организмов. У многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона по аналогии с планктонными обитателями водной среды.

Основная же экологическая роль горизонтальных воздушных передвижений (ветров) – косвенная в усилении и ослаблении воздействия на наземные организмы таких важных экологических факторов, как температура и влажность. Ветры усиливают отдачу животными и растениями влаги и тепла.

Газовый состав воздуха в приземном слое воздухе довольно однороден (кислород – 20,9 %, азот – 78,1 %, инертные газы – 1 %, углекислый газ – 0,03 % по объему) благодаря его высокой диффузионной способности и постоянному перемешиванию конвекционным и ветровым потоками. Однако различные примеси газообразных, капельно-жидких и твердых (пылевых) частиц, попадающих в атмосферу из локальных источников, могут иметь существенное экологическое значение.

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов, и на базе высокой эффективности окислительных процессов возникла гомойотермия животных. Кислород из-за постоянно высокого его содержания в воздухе не является фактором, лимитирующим жизнь в наземной среде. Лишь местами, в специфических условиях, создается временный его дефецит, например в скоплениях разлагающихся растительных остатков, запасах зерна, муки и т.д.

Эдафические факторы. Свойства грунта и рельеф местности также влияют на условия жизни наземных организмов, в первую очередь растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяют названием эдафические факторы среды.

Характер корневой системы растений зависит от гидротермического режима, аэрации, сложения, состав и структуры почвы. Например, корневые системы древесных пород (березы, лиственницы) в районах с многолетней мерзлотой располагаются на небольшой глубине и распростерты вширь. Там, где нет многолетней мерзлоты, корневые системы этих же растений менее распростерты и проникают вглубь. У многих степных растений корни могут доставать воду с большой глубины, в то же время у них много и поверхностных корней в гумусированном горизонте почвы, откуда растения поглощают элементы минерального питания.

Рельеф местности и характер грунта влияют на специфику передвижения животных. Например, копытные, страусы, дрофы, живущие на открытых пространствах, нуждаются в твердом грунте для усиления отталкивания при быстром беге. У ящериц, обитающих на сыпучих песках, пальцы окаймлены бахромкой из роговых чешуй, которая увеличивает поверхность опоры. Для наземных обитателей, роющих норы, плотные грунты неблагоприятны. Характер почвы в ряде случаев влияет на распределение наземных животных, роющих норы, зарывающих в грунт для спасения от жары или хищников либо откладывающих в почву яйца и т.д.

Погодные и климатические особенности. Условия жизни в наземно-воздушной среде осложняются, кроме того, погодными изменениями. Погода – это непрерывно меняющееся состояние атмосферы у земной поверхности, до высоты примерно 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетании таких факторов среды, как температура и влажность воздуха, облачность, осадки, сила и направление ветра и т.п. Для погодных изменений наряду с закономерным чередованием их в годовом цикле характерны непериодические колебания, что существенно усложняет условия существования наземных организмов. На жизнь водных обитателей погода влияет в значительной меньшей степени и лишь на население поверхностных слоев.

Климат местности. Многолетний режим погоды характеризует климат местности. В понятие климата входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонения от него и их повторяемость. Климат определяется географическими условиями района.

Зональное разнообразие климатов осложняется действием муссонных ветров, распределением циклонов и антициклонов, влиянием горных массивов на движение воздушных масс, степенью удаления от океана и многими другими местными факторами.

Для большинства наземных организмов, особенно мелких, важен не столько климат района, сколько условия их непосредственного местообитания. Очень часто местные элементы среды (рельеф, растительность и т.п.) так изменяют в конкретном участке режим температуры, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие локальные модификации климата, складывающиеся в приземном слое воздуха, называют микроклиматом. В каждой зоне микроклиматы очень разнообразны. Можно выделить микроклиматы сколь угодно малых участков. Например особый режим создается в венчиках цветков, что используют обитающие там обитатели. Особый устойчивый микроклимат возникает в норах, гнездах, дуплах, пещерах и др. закрытых местах.

Осадки. Помимо водообеспечения и создания запасов влаги, они могут играть и другую экологическую роль. Так, сильные ливневые дожди или град оказывают иногда механическое воздействие на растения или животных.

Особенно многообразна экологическая роль снегового покрова. Суточные колебания температур проникают в толщу снега лишь до 25 см, глубже температура почти не изменяется. При морозах в – 20-30 С под слоем снега в 30-40 см температура лишь ненамного ниже нуля. Глубокий снежный покров защищает почки возобновления, предохраняет от вымерзания зеленые части растений; многие виды уходят под снег, не сбрасывая листвы, например ожика волосистая, вероника лекарственная и др.

Мелкие наземные зверки ведут и зимой активный образ жизни, прокладывая под снегом и в его толще целые галереи ходов. Для ряда видов, питающихся подснежной растительностью, характерно даже зимнее размножение, которое отмечено, например, у леммингов, лесной и желтогорлой мыши, ряда полевок, водяной крысы и др. Тетеревиные птицы – рябчики, тетерева, тундряные куропатки – зарываются в снег на ночевку.

Крупным животным зимний снеговой покров мешает добывать корм. Многие копытные (северные олени, кабаны, овцебыки) питаются зимой исключительно подснежной растительностью, и глубокий снежный покров, а особенно твердая корка на его поверхности, возникающая в гололед, обрекают их на бескормицу. Глубина снежного покрова может ограничивать географическое распространение видов. Например, настоящие олени не проникают на север в те районы, где толща снега зимой более 40-50 см.

Световой режим. Количество достигающей поверхности Земли радиации обусловлено географической широтой местности, продолжительностью дня, прозрачностью атмосферы и углом падения солнечных лучей. При разных погодных условиях к поверхности Земли доходит 42-70% солнечной постоянной. Освещенность на поверхности Земли варьирует в широких пределах. Все зависит от высоты стояния Солнца над горизонтом или угла падения солнечных лучей, длины дня и условий погоды, прозрачности атмосферы. Интенсивность света также колеблется в зависимости от времени года и времени суток. В отдельных районах Земли неравноценно и качество света, например, соотношение длинноволновых (красных) и коротковолновых (синих и ультрафиолетовых) лучей. Коротковолновые лучи, как известно, больше, чем длинноволновые, поглощаются и рассеиваются атмосферой.

Почва как среда обитания

Почва представляет собой рыхлый тонкий поверхностный слой суши, контактирующий с воздушной средой. Почва представляет собой не просто твердое тело, как большинство пород литосферы, а сложную трехфазную систему, в которой твердые частицы окружены воздухом и водой. Она пронизана полостями, заполненными смесью газов и водными растворами, и поэтому в ней складывается чрезвычайно разнообразные условия, благоприятные для жизни множества микро- и макроорганизмов. В почве сглажены температурные колебания по сравнению с приземным слоем воздуха, а наличие грунтовых вод и проникновение осадков создают запасы влаги и обеспечивают режим влажности, промежуточный между водой и наземной средой. В почве концентрируются запасы органических и минеральных веществ, поставляемых отмирающей растительностью и трупами животных. Все это определяет большую насыщенность почвы жизнью.

Неоднородность условий в почве резче всего проявляется в вертикальном направлении. С глубиной резко меняется ряд важнейших экологических факторов, влияющих на жизнь обитателей почвы. Прежде всего это относится к структуре почвы. В ней выделяют три основных горизонта, различающихся по морфологическим и химическим свойствам: 1) верхний перегнойно-аккумулятивный горизонт, в котором накапливается и преобразуется органическое вещество и из которого промывными водами часть соединений выносится вниз; 2) горизонт вмывания, или иллювиальный, где оседают и преобразуются вымытые сверху вещества, и 3) материнскую породу, или горизонт, материал которой преобразуется в почву.

Размеры полостей между частицами почвы, пригодны для обитания в них животных, обычно быстро уменьшается с глубиной. Н-р, в луговых почвах средний диаметр полостей на глубине 0-1 мм составляет 3 мм; 1-2 см 2 мм, а на глубине 2-3 см – всего 1 мм; глубже почвенные поры еще мельче.

Влага в почве присутствует в различных состояниях: 1) связанная (гигроскопическая и пленочная) прочно удерживается поверхностью почвенных частиц; 2) капиллярная занимает мелкие поры и может передвигаться по ним в различных направлениях; 3) гравитационная заполняет более крупные пустоты и медленно просачивается вниз под влиянием силы тяжести; 4) парообразная содержится в почвенном воздухе.

Состав почвенного воздуха изменчив. С глубиной в нем сильно падает содержание кислорода и возрастает концентрация углекислого газа. В связи с присутствием в почве разлагающихся органических веществ в почвенном воздухе может быть высокая концентрация таких токсичных газов, как аммиак, сероводород, метан и др. При затоплении почвы или интенсивном гниении растительных остатков местами могут возникать полностью анаэробные условия.

Колебания температуры резки только на поверхности почвы. Здесь они могут быть даже сильнее, чем в приземном слое воздуха. Однако с каждым сантиметром вглубь суточные и сезонные температурные изменения становятся все меньше и на глубине 1-1,5 м практически уже не прослеживаются.

Все эти особенности приводят к том, что, несмотря на большую неоднородность экологических условий в почве, она выступает как достаточно стабильная среда, особенно для почвенных организмов. Крутой градиент влажности в почвенном профиле позволяет почвенным организмам путем незначительных перемещений обеспечить себе подходящую экологическую обстановку.

Почвенных обитателей в зависимости от их размеров и степени подвижности можно разделить на несколько групп:

1. Микробиота – это почвенные микроорганизмы, составляющие основное звено детритной пищевой цепи, представляют собой как бы промежуточное звено между растительными остатками и почвенными животными. Это зеленые и сине-зеленые водоросли, бактерии, грибы и простейшие. Это водные организмы, а почва для них – это система микроводоемов. Они живут в почвенных порах, заполненных гравитационной или капиллярной влагой, а часть жизни могут, как микроорганизмы, находиться в адсорбированном состоянии на поверхности частиц в тонких прослойках пленочной влаги.

2. Мезобиота – это совокупность сравнительно мелких, легко извлекающихся из почвы, подвижных животных (почвенные нематоды, мелкие личинки насекомых, клещи и др.). Размеры представителей мезобиоты почв – от десятых долей до 2-3 мм. Для данной группы животных почва представляется как система мелких пещер. У них специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь. Насыщенный водяными парами почвенный воздух позволяет им дышать через покровы тела. Периоды затопления почвы водой животные переживают, как правило, в пузырьках воздуха. Воздух задерживается вокруг их тела из-за несмачиваемости покровов, снабженных у большинства из них волосками, чешуйками.

Животные мезо- и микробиотипов способны переносить зимнее промерзание почвы, что особенно является важным, так как большинство из них не может уходить вниз из слоев, подвергающихся воздействию отрицательных температур.

3) Макробиота – это крупных почвенные животные, с размерами тела от 2 до 20 мм (личинки насекомых, многоножки, дождевые черви и др.). Он передвигаются в почве, расширяя естественные скважины путем раздвижения почвенных частиц либо роя новые ходы. Оба способа передвижения накладывают отпечаток на внешнее строение животных. Газообмен большинства видов данной группы осуществляется при помощи специализированных органов дыхания, но наряду с этим дополняется газообменом через покровы.

Роющие животные могут уходить из слоев, где возникает неблагоприятная обстановка. К зиме и в засуху они концентрируются в более глубоких слоях, большей частью в нескольких десятках сантиметров от поверхности.

4) Мегабиота – это крупные землерои, главным образом из числа млекопитающих. Многие из них проводят в почве всю жизнь (златокроты в Африке, слепушки, кроты в Евразии, сумчатые кроты в Австралии).Они прокладывают в почве целые системы ходов и нор. Приспособленность к роющему подземному образу жизни находит отражение во внешнем облике и анатомических особенностях этих животных: у них недоразвиты глаза, компактное вальковатое тело с короткой шеей, короткий густой мех, сильные компактные конечности с крепкими когтями.

Помимо постоянных обитателей почвы среди крупных животных нередко выделяют отдельную экологическую группу обитателей нор (барсуки, сурки, суслики, тушканчики и др.). Они кормятся на поверхности, однако размножаются, зимуют, отдыхают, спасаются от опасности в почве.


Жизнь на суше потребовала таких приспособлений, которые оказались возможными только у высокоорганизованных живых организмов. Наземно-воздушная среда более сложная для жизни, она отличается высоким содержанием кислорода, малым количеством водяных паров, низкой плотностью и т.д. Это сильно изменило условия дыхания, водообмена и передвижения живых существ.

Низкая плотность воздуха определяет его малую подъемную силу и незначительную опорность. Организмы воздушной среды должны иметь собственную опорную систему, поддерживающую тело: растения – разнообразные механические ткани, животные – твердый или гидростатический скелет. Кроме этого, все обитатели воздушной среды тесно связаны с поверхностью земли, которая служит им для прикрепления и опоры.

Малая плотность воздуха обеспечивает низкую сопротивляемость передвижения. Поэтому многие наземные животные приобрели способность к полету. К активному полету приспособилось 75% всех наземных, преимущественно насекомые и птицы.

Благодаря подвижности воздуха, существующим в нижних слоях атмосферы вертикальным и горизонтальным потокам воздушных масс возможен пассивный полет организмов. В связи с этим у многих видов развита анемохория – расселение с помощью воздушных потоков. Анемохория характерна для спор, семян и плодов растений, цист простейших, мелких насекомых, пауков и т.д. Пассивно переносимые потоками воздуха организмы получили в совокупности название аэропланктона.

Наземные организмы существуют в условиях сравнительно низкого давления, обусловленного малой плотностью воздуха. В норме оно равно 760 мм ртутного столба. С увеличением высоты над уровнем моря давление уменьшается. Низкое давление может ограничивать распространенность видов в горах. Для позвоночных животных верхняя граница жизни – около 60 мм. Снижение давления влечет за собой уменьшение обеспеченности кислородом и обезвоживание животных за счет увеличения частоты дыхания. Примерно такие же пределы продвижения в горах имеют высшие растения. Несколько более выносливы членистоногие, которые могут встречаться на ледниках, выше границы растительности.

Газовый состав воздуха. Кроме физических свойств воздушной среды, для существования наземных организмов очень важны ее химические свойства. Газовый состав воздуха в приземном слое атмосферы довольно однороден в отношении содержания главных компонентов (азот – 78,1%, кислород – 21,0%, аргон – 0,9%, углекислый газ – 0,003% от объема).

Высокое содержание кислорода способствовало повышению обмена веществ у наземных организмов по сравнению с первичноводными. Именно в наземной обстановке, на базе высокой эффективности окислительных процессов в организме, возникла гомойтермия животных. Кислород из-за постоянного его высокого содержания в воздухе не является лимитирующим фактором жизни в наземной среде.

Содержание углекислого газа может изменяться в отдельных участках приземного слоя воздуха в довольно значительных пределах. Повышенное насыщение воздуха СО? возникает в зонах вулканической активности, возле термальных источников и других подземных выходов этого газа. В высоких концентрациях углекислый газ токсичен. В природе такие концентрации встречаются редко. Низкое содержание СO 2 тормозит процесс фотосинтеза. В условиях закрытого грунта можно повысить скорость фотосинтеза, увеличив концентрацию углекислого газа. Этим пользуются в практике тепличного и оранжерейного хозяйства.

Азот воздуха для большинства обитателей наземной среды является инертным газом, но отдельные микроорганизмы (клубеньковые бактерии, азотбактерии, сине-зеленые водоросли и др.) обладают способностью связывать его и вовлекать в биологический круговорот веществ.

Дефицит влаги – одна из существенных особенностей наземно-воздушной среды жизни. Вся эволюция наземных организмов шла под знаком приспособления к добыванию и сохранению влаги. Режимы влажности среды на суше очень разнообразны – от полного и постоянного насыщения воздуха водяными парами в некоторых районах тропиков до практически полного их отсутствия в сухом воздухе пустынь. Также значительна суточная и сезонная изменчивость содержания водяных паров в атмосфере. Водообеспеченность наземных организмов зависит также от режима выпадения осадков, наличия водоемов, запасов почвенной влаги, близости фунтовых вод и т.д.

Это привело к развитию у наземных организмов адаптации к различным режимам водообеспечения.

Температурный режим. Следующей отличительной чертой воздушно-наземной среды являются значительные температурные колебания. В большинстве районов суши суточные и годовые амплитуды температур составляют десятки градусов. Устойчивость к температурным изменениям среды у наземных обитателей очень различна, в зависимости от того, в каком конкретном местообитания проходит их жизнь. Однако в целом наземные организмы значительно более эвритермны по сравнению с водными организмами.

Условия жизни в наземно-воздушной среде осложняются, кроме того, существованием погодных изменений. Погода – непрерывно меняющиеся состояния атмосферы у заемной поверхности, до высоты примерно в 20 км (граница тропосферы). Изменчивость погоды проявляется в постоянном варьировании сочетания таких факторов среды, как температура, влажность воздуха, облачность, осадки, сила и направление ветра и т.д. Многолетний режим погоды характеризует климат местности. В понятие «Климат» входят не только средние значения метеорологических явлений, но также их годовой и суточный ход, отклонение от него и их повторяемость. Климат определяется географическими условиями района. Основные климатические факторы – температура и влажность – измеряются количеством осадков и насыщенностью воздуха водяными парами.

Для большинства наземных организмов, особенно мелких, не столько важен климат района, сколько условия их непосредственного обитания. Очень часто местные элементы среды (рельеф, экспозиция, растительность и т.д.) так изменяют в конкретном участке режим температур, влажности, света, движения воздуха, что он значительно отличается от климатических условий местности. Такие модификации климата, складывающиеся в приземном слое воздуха, называются микроклиматом. В каждой зоне микроклимат очень разнообразен. Можно выделить микроклиматы очень небольших участков.

Световой режим наземно-воздушной среды также обладает некоторыми особенностями. Интенсивность и количество света здесь наиболее велики и практически не лимитируют жизнь зеленых растений, как в воде или почве. На суше возможно существование чрезвычайно светолюбивых видов. Для подавляющего большинства наземных животных с дневной и даже ночной активностью зрение представляет собой один из основных способов ориентации. У наземных животных зрение имеет важное значение для поисков добычи, многие виды обладают даже цветным зрением. В связи с этим у жертв возникают такие приспособительные особенности, как защитная реакция, маскирующая и предупреждающая окраска, мимикрия и т.д. У водных обитателей такие адаптации развиты значительно меньше. Возникновение ярко окрашенных цветков высших растений также связано с особенностями аппарата опылителей и в конечном счете – со световым режимом среды.

Рельеф местности и свойства грунта – также условия жизни наземных организмов и, в первую очередь, растений. Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей, объединяются «эдафическими факторами среды» (от греческого «эдафос» – «почва»).

По отношению к разным свойствам почв можно выделить целый ряд экологических групп растений. Так, по реакции на кислотность почвы различают:

1) ацидофильные виды – растут на кислых почвах с рН не менее 6,7 (растения сфагновых болот);

2) нейтрофильные – склонны расти на почвах с рН 6,7–7,0 (большинство культурных растений);

3) базифильные – растут при рН более 7,0 (мордовник, лесная ветренница);

4) индиферентные – могут произрастать на почвах с разным значением рН (ландыш).

Отличаются растения и по отношению к влажности почвы. Определенные виды приурочены к разным субстратам, например, петрофиты растут на каменистых почвах, пасмофиты заселяют сыпучие пески.

Рельеф местности и характер грунта влияют на специфику передвижения животных: например, копытных, страусов, дроф, живущих на открытых пространствах, твердом грунте, для усиления отталкивания при беге. У ящериц, обитающих в сыпучих песках, пальцы окаймлены бахромой из роговых чешуек, увеличивающих опоры. Для наземных обитателей, роющих норы, плотный грунт неблагоприятен. Характер почвы в определенных случаях влияет на распределение наземных животных, роющих норы или зарывающихся в грунт, или откладывающих яйца в почву и т.д.



Жизнь на суше во многом зависит от состояния воздуха. Естественная смесь газов, сложившаяся в процессе эволюции Земли, — это и есть воздух, которым мы дышим.

Воздух как среда жизни направляет эволюционное развитие обитателей этой среды. Так, высокое содержание кислорода определяет возможность формирования высокого уровня энергетического метаболизма (обмена веществ между организмом и средой). Атмосферный воздух отличается низкой и изменчивой влажностью, что ограничило возможности освоения воздушной среды, а у ее обитателей обусловило эволюцию системы водно-солевого обмена и структуру органов дыхания. Следует также отметить низкую плотность воздуха в атмосфере, благодаря чему жизнь сосредоточена вблизи поверхности Земли и проникает в толщу атмосферы на высоту не более 50-70 м (кроны деревьев тропических лесов).

Основными компонентами атмосферного воздуха являются азот (N 2) — 78,08 %, кислород (0 2) — 20,9 %, аргон (Аr) — около 1 % и углекислый газ (С0 2) — 0,03 % (табл. 1).

Кислород появился на Земле примерно 2 млрд лет назад, когда происходило формообразование поверхности под воздействием активной вулканической деятельности. В течение последних 20 млн лет доля кислорода в воздухе постепенно возрастала (сегодня она составляет 21 %). Главную роль в этом играло развитие растительного мира суши и океана.

Таблица 1. Газовый состав атмосферы Земли

Атмосфера предохраняет Землю от метеоритной бомбардировки. Около 5 раз в год в атмосфере сгорают обломки метеоритов, комет и астероидов, мощность которых при встрече с Землей превысила бы мощность бомбы, сброшенной на Хиросиму. Большинство метеоритов никогда не достигает земной поверхности, они сгорают еще при вхождении с огромной скоростью в атмосферу. Ежегодно на Землю выпадает около 6 млн т космической пыли.

Кроме того, атмосфера способствует сохранению тепла на планете, которое в противном случае рассеивалось бы в холоде космического пространства. Сама же атмосфера благодаря силе притяжения не улетучивается.

На высоте 20-25 км от поверхности Земли находится защитный (слой), задерживающий губительную для всего живого ультрафиолетовую радиацию. Не будь его, такое излучение могло бы уничтожить жизнь на Земле. К сожалению, начиная с 80-90-х гг. XX в. наблюдается негативная тенденция к истончению и разрушению озонового экрана.