Счетчики Гейгера. Принцип работы. Принцип действия счетчика гейгера и современные дозиметры

Неконтролируемое ионизирующее излучение в любых проявлениях опасно. Поэтому существует необходимость его регистрации, наблюдения и учета. Ионизационный метод регистрации ИИ - один из методов дозиметрии, позволяющий быть в курсе реальной радиационной обстановки.

Что такое ионизационный метод регистрации излучения?

В основе этого метода лежит регистрация эффектов ионизации. Электрическое поле не дает ионам рекомбинировать и направляет их движение к соответствующим электродам. Благодаря этому появляется возможность замерить величину заряда ионов, образующихся под действием ионизирующего излучения.

Детекторы и их особенности

В качестве детекторов при ионизационном методе используются:

  • ионизационные камеры;
  • счетчики Гейгера—Мюллера;
  • пропорциональные счетчики;
  • полупроводниковые детекторы;
  • и др.

Все детекторы за исключением полупроводниковых - это баллоны, наполненные газом, в которые вмонтированы два электрода с подведенным к ним напряжением постоянного тока. На электродах собираются ионы, образующиеся при прохождении ионизирующего излучения сквозь газовую среду. Отрицательные ионы движутся к аноду, а положительные к катоду, образуя ионизационный ток. По его значению можно оценить количество зарегистрированных частиц и определить интенсивность излучения.

Принцип работы счетчика Гейгера-Мюллера

В основе работы счетчика лежит ударная ионизация. Движущиеся в газе электроны (выбитые излучением при попадании на стенки счетчика) сталкиваются с его атомами, выбивая из них электроны, в результате чего создаются свободные электроны и положительные ионы. Существующее между катодом и анодом электрическое поле придает свободным электронам ускорение, достаточное для начала ударной ионизации. Вследствие этой реакции появляется большое количество ионов с резким возрастанием тока через счетчик и импульсом напряжения, который фиксируется регистрирующим устройством. Далее лавинный разряд гасится. Только после этого может быть зарегистрирована следующая частица.

Отличие ионизационной камеры и счетчика Гейгера-Мюллера.

В газовом счетчике (счетчик Гейгера) используется вторичная ионизация, создающая большое газовое усиление тока, которое возникает вследствие того, что скорость движущихся ионов, созданных ионизирующим веществом, настолько велика, что образуются новые ионы. Они, в свою очередь, также могут ионизировать газ, тем самым, развивая процесс. Таким образом, каждая частица образует ионов в 10 6 раз больше, чем это возможно в ионизационной камере, позволяя, таким образом, измерять ионизирующее излучение даже малой интенсивности.

Полупроводниковые детекторы

Основным элементом полупроводниковых детекторов является кристалл, а принцип работы отличается от ионизационной камеры только тем, что ионы создаются в толще кристалла, а не в газовом промежутке.

Примеры дозиметров на основе ионизационных методов регистрации

Современный прибор этого типа - клинический дозиметр 27012 с набором ионизационных камер, который на сегодняшний день является эталоном.

Среди индивидуальных дозиметров получили распространение КИД-1, КИД-2,ДК-02, ДП-24 и др., а также ИД-0,2, который является современным аналогом упомянутых выше.

В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.

Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.

Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.

Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.

Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):

Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.

При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.

Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:

Схему собираю на макетной плате:

Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.

На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 - 450 вольт.

В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.

В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).

Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 - 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.

P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Программируемый таймер и осциллятор

NE555

1 В блокнот
T1 MOSFET-транзистор

IRF710

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
VD2 Защитный диод

1V5KE400CA

1 В блокнот
C1, C2 Конденсатор 10 нФ 2 В блокнот
C3 Электролитический конденсатор 2.7 мкФ 1 В блокнот
C4 Конденсатор 100 нФ 1 400В

Счетчик Гейгера - Мюллера

Д ля определения уровня радиации применяется специальный прибор – . И для таких приборов бытового и большинства профессиональных устройств дозиметрического контроля, в качестве чувствительного элемента используется счетчик Гейгера . Это часть радиометра позволяет достаточно точно определить уровень радиации.

История появления счетчика Гейгера

В первые, устройство для определения интенсивности распада радиоактивных материалов появилось на свет в 1908 году, его изобрел немецкий физик Ганс Гейгер . Спустя двадцать лет, совместно с еще одним физиком Вальтером Мюллером прибор был усовершенствован, и в честь этих двух ученых и был назван.

В период развития и становления ядерной физики в бывшем советском союзе, также были созданы соответствующие устройства, которые широко применялись в вооруженных силах, на атомных электростанциях, и в специальных группах радиационного контроля гражданской обороны. В состав таких дозиметров, начиная с семидесятых годов прошлого века, входил счетчик, основанный на принципах Гейгера, а именно СБМ-20 . Данный счетчик, ровно, как и еще один его аналог СТС-5 , широко применяется и по настоящий момент, а также входит в состав современных средств дозиметрического контроля .

Рис.1. Газоразрядный счетчик СТС-5.


Рис.2. Газоразрядный счетчик СБМ-20.

Принцип работы счетчика Гейгера – Мюллера

И дея регистрации радиоактивных частиц предложенной Гейгером относительно проста. Она основана на принципе появления электрических импульсов в среде инертного газа под действием высокозаряженной радиоактивной частицы или кванта электромагнитных колебаний. Чтобы подробней остановиться на механизме действия счетчика, остановимся немного на его конструкции и процессах происходящих в нем, при прохождении радиоактивной частицы через чувствительный элемент прибора.

Р егистрирующее устройство представляет собой герметичный баллон или контейнер, который наполняется инертным газом, это может быть неон, аргон и т.д. Такой контейнер может быть изготовлен из металла или стекла, причем газ в нем находиться под низким давлением, это делается специально, чтобы упростить процесс регистрации заряженной частицы. Внутри контейнера расположены два электрода (катод и анод) на которые подается высокое напряжение постоянного тока через специальный нагрузочный резистор.


Рис.3. Устройство и схема включения счетчика Гейгера.

П ри активации счетчика в среде инертного газа на электродах не возникает разряда за счет высокого сопротивления среды, однако ситуация меняется если в камеру чувствительного элемента прибора попадает радиоактивная частица или квант электромагнитных колебаний. В этом случае частица, имеющая заряд достаточно высокой энергии, выбивает некоторое количество электронов из ближайшего окружения, т.е. из элементов корпуса или физически самих электродов. Такие электроны, оказавшись в среде инертного газа, под действием высокого напряжения между катодом и анодом, начинают двигаться в сторону анода, по пути ионизируя молекулы этого газа. В результате они выбивают из молекул газа вторичные электроны, и этот процесс растет в геометрических масштабах, пока между электродами не происходит пробой. В состоянии разряда цепь замыкается на очень короткий промежуток времени, а это обуславливает скачок тока в нагрузочном резисторе, и именно этот скачок и позволяет зарегистрировать прохождение частицы или кванта через регистрационную камеру.

Т акой механизм позволяет зарегистрировать одну частицу, однако в среде, где ионизирующее излучение достаточно интенсивно, требуется быстрое возвращение регистрационной камеры в исходное положение, для возможности определения новой радиоактивной частицы . Это достигается двумя различными способами. Первый из них заключается в том, чтобы на короткий промежуток времени прекратить подачу напряжения на электроды, в этом случае ионизация инертного газа резко прекращается, а новое включение испытательной камеры, позволяет начать регистрацию с самого начала. Такой тип счетчиков носит название несамогасящиеся дозиметры . Второй тип устройств, а именно самогасящиеся дозиметры, принцип их действия заключается в добавлении в среду инертного газа специальных добавок на основе различных элементов, к примеру, бром, йод, хлор или спирт. В этом случае их присутствие автоматически приводит к прекращению разряда. При таком строении испытательной камеры в качестве нагрузочного резистора используются сопротивления иногда на несколько десятков мегаом. Это позволяет во время разряда резко уменьшить разность потенциалов на концах катода и анода, что прекращает токопроводящий процесс и камера возвращается в исходное состояние. Стоит отметить, что напряжение на электродах менее 300 вольт автоматически прекращает поддержание разряда.

Весь описанный механизм позволяет регистрировать огромное количество радиоактивных частиц за короткий промежуток времени.

Виды радиоактивного излучения

Ч тобы понимать, что именно регистрируют счетчики Гейгера – Мюллера , стоит остановиться на том, и какие виды ее существуют. Сразу стоит оговориться, что газоразрядные счетчики, которые входят в состав большинства современных дозиметров, способны только зарегистрировать количество радиоактивных заряженных частиц или квантов, но не могут определить, ни их энергетических характеристик, ни тип излучения. Для этого дозиметры делают более многофункциональными и целевыми, и чтобы правильно их сравнивать следует более точно понимать их возможности.

П о современным представлениям ядерной физики радиационное излучение можно разделить на два типа, первый в виде электромагнитного поля , второй в виде потока частиц (корпускулярное излучение). К первому типу можно отнести поток гамма-частиц или рентгеновское излучение . Главной их особенностью является способность распространяться в виде волны на очень большие расстояния, при этом они достаточно легко проходят через различные предметы и могут без труда проникать в самые различные материалы. Для примера, если человеку нужно спрятаться от потока гамма-лучей, вследствие ядерного взрыва, то укрывшись в подвале дома или бомбоубежища, при условии его относительной герметичности, он сможет обезопасить себя от этого типа излучения только на 50 процентов.


Рис.4. Кванты рентгеновского и гамма-излучения.

Т акой тип излучения носит импульсный характер и характеризуется распространением в окружающей среде в виде фотонов или квантов, т.е. коротких вспышек электромагнитного излучения. Такое излучение может иметь различные энергетические и частотные характеристики, к примеру, рентгеновское излучение имеет в тысячи раз меньшую частоту, чем гамма–лучи. Поэтому гамма-лучи существенно более опасны для человеческого организма и их воздействие носит значительно более разрушительный характер.

И злучение, основанное на корпускулярном принципе, это альфа и бета частицы (корпускулы). Они возникают в результате ядерной реакции, при которой происходит превращение одних радиоактивных изотопов в другие с выделением колоссального количества энергии. При этом бета-частицы представляют собой поток электронов, а альфа-частицы, существенно более крупные и более устойчивые образования, состоящие из двух нейтронов и двух протонов связанных друг с другом. По сути, такое строение имеет ядро атома гелия, поэтому вполне можно утверждать, что поток альфа-частиц это поток ядер гелия.

П ринята следующая классификация , наименьшей проникающей способностью обладают альфа-частицы, чтобы от них защититься, человеку достаточно и плотного картона, большей проникающей способностью обладают бета-частицы, чтобы человек мог обезопасить себя от потока такого излучения ему потребуется уже металлическая защита в несколько миллиметров толщиной (к примеру, алюминиевый лист). От гамма - квантов практически не существует защиты, и они распространяются на значительные расстояния, затухая по мере отдаления от эпицентра или источника, и подчиняясь законам распространения электромагнитных волн.


Рис.5. Радиоактивные частицы альфа и бета типа.

К оличество энергии, которой обладают все эти три типа излучения, также различны, и наибольшей из них обладает поток альфа частиц. Для примера, энергия, которой обладают альфа частицы в семь тысяч раз больше, чем энергия бета-частиц , т.е. проникающая способность различных типов радиации, находится в обратно пропорциональной зависимости от их проникающей способности.

Д ля человеческого организма наиболее опасным типом радиоактивного излучения считаются гамма кванты , за счет высокой проникающей способности, а затем по убывающей, бета-частицы и альфа-частицы. Поэтому, определить альфа-частицы достаточно трудно, если сказать невозможно обычным счетчиком Гейгера - Мюллера , так как для них является препятствием практически любой объект, не говоря уже о стеклянном или металлическом контейнере. Определить бета-частицы таким счетчиком можно, но лишь в том случае, когда их энергии достаточно для прохождения через материал контейнера счетчика.

Для бета-частиц с малыми энергиями обычный счетчик Гейгера – Мюллера неэффективен.

О братная ситуация с гамма-излучением, есть вероятность, что они насквозь пройдут через контейнер, не запустив реакцию ионизации. Для этого в счетчиках устанавливают специальный экран (из плотной стали или свинца), который позволяет снизить энергию гамма-квантов и активировать, таким образом, разряд в камере счетчика.

Базовые характеристики и отличия счетчиков Гейгера – Мюллера

С тоит также осветить некоторые базовые характеристики и отличия различных дозиметров, оборудованных газоразрядными счетчиками Гейгера – Мюллера . Для этого следует сравнить некоторые из них.

Наиболее распространенные счетчики Гейгера – Мюллера оборудованы цилиндрическими или торцевыми датчиками . Цилиндрические похожи на продолговатый цилиндр в виде трубки с небольшим радиусом. Торцевая ионизационная камера имеет округлую или прямоугольную форму небольших размеров, но со значительной торцевой рабочей поверхностью. Иногда встречаются разновидности торцевых камер с удлиненной цилиндрической трубкой с небольшим входным окном с торцевой стороны. Различные конфигурации счетчиков, а именно самих камер, в состоянии регистрировать разные типы излучений, или же их комбинации, (к примеру, комбинации гамма и бета лучей, или всего спектра альфа, бета и гамма). Такое становится возможным благодаря специально разработанной конструкции корпуса счетчика, а также материала, из которого он изготавливается.

Е ще одной важной составляющей для целевого применения счетчиков это площадь входного чувствительного элемента и рабочей зоны . Другими словами это сектор, через который будут попадать, и регистрироваться интересующие нас радиоактивные частицы. Чем больше эта площадь, тем больше счетчик будет в состоянии уловить частиц, и тем сильнее будет его чувствительность к радиации. В паспортных данных к указывается площадь рабочей поверхности, как правило, в квадратных сантиметрах.

Е ще один важный показатель, который указывается в характеристиках к дозиметру, это величина шума (измеряется в импульсах в секунду). Другими словами, этот показатель можно назвать величиной собственного фона. Его можно определить в лабораторных условиях, для этого прибор помещают в хорошо защищенном помещении или камере, как правило, с толстыми стенками из свинца, и регистрируют уровень радиации, который испускает само устройство. Понятно, что если такой уровень будет достаточно существенным, то эти наведенные шумы непосредственно отразятся на погрешности измерений.

Каждый профессиональный и радиации обладает такой характеристикой, как радиационная чувствительность, также измеряется в импульсах в секунду (имп/с), или в импульсах на микрорентген (имп/мкР). Такой параметр, а точнее его использование, напрямую зависит от источника ионизирующего излучения, на который настраивается счетчик, и по которому будет проводиться дальнейшее измерение. Часто настройку производят по источникам, включающим такие радиоактивные материалы как, радий – 226, кобальт – 60, цезий – 137, углерод – 14 и другие.

Е ще один показатель, по которому стоит сравнивать дозиметры, это эффективность регистрации ионного излучения или радиоактивных частиц. Существование этого критерия связано с тем, что не все пройденные через чувствительный элемент дозиметра радиоактивные частицы будут зарегистрированы. Это может происходить в случае, когда квант гамма-излучения не вызвал ионизацию в камере счетчика, или количество прошедших частиц и вызвавших ионизацию и разряд столь велико, что устройство неадекватно их подсчитывает, и по некоторым другим причинам. Чтобы точно определить данную характеристику конкретного дозиметра, его тестируют при помощи некоторых радиоактивных источников, к примеру, плутония- 239 (для альфа-частиц), или таллия – 204, стронция – 90, иттрия - 90 (бета-излучатель), а также других радиоактивных материалов.

С ледующий критерий, на котором необходимо остановиться, это диапазон регистрируемых энергий . Любая радиоактивная частица или квант излучения обладают различной энергетической характеристикой. Поэтому, дозиметры рассчитаны на измерение не только конкретного типа излучения, но и на их соответствующую энергетическую характеристику. Такой показатель измеряется в мегаэлектронвольтах или килоэлектронвольтах, (МэВ, КэВ). К примеру, если бета-частицы не обладают достаточной энергией, то они не смогут выбить электрон в камере счетчика, и поэтому не будут зарегистрированы, или, только высокоэнергетические альфа-частицы смогут пробиться через материал корпуса счетчика Гейгера – Мюллера и выбить электрон.

И сходя из всего вышеизложенного, современные производители дозиметров радиации выпускают широкий ассортимент приборов для различных целевых назначений и конкретных отраслей промышленности. Поэтому стоит рассмотреть конкретные разновидности счетчиков Гейгера.

Различные варианты счетчиков Гейгера – Мюллера

П ервый вариант дозиметров, это устройства, рассчитанные на регистрацию и обнаружение гамма-фотонов и высокочастотного (жесткого) бета-излучения. На данный диапазон измерений рассчитаны практически все из ранее произведенных и современных, как бытовых например: , так и профессиональных дозиметров радиации, например: . Такое излучение обладает достаточной энергией и большой проникающей способностью, чтобы камера счетчика Гейгера смогла их зарегистрировать. Такие частицы и фотоны легко проникают через стенки счетчика и вызывают процесс ионизации, а это легко регистрируется соответствующей электронной начинкой дозиметра.

Д ля регистрации такого типа радиации прекрасно подходят популярные счетчики типа СБМ-20 , имеющие датчик в виде цилиндрической трубки-баллона с расположенными коаксиально проволочными катодом и анодом. Причем, стенки трубки датчика служат одновременно катодом и корпусом, и изготовлены из нержавеющей стали. Данный счетчик имеет следующие характеристики:

  • площадь рабочей зоны чувствительного элемента 8 квадратных сантиметров;
  • радиационная чувствительность по гамма излучению порядка 280 имп/с, или 70 имп/мкР (тестирование проводилось по цезию – 137 при 4 мкР/с);
  • собственный фон дозиметра составляет порядка 1 имп/с;
  • датчик рассчитан на регистрацию гамма-излучения с энергией в диапазоне от 0,05МэВ до 3МэВ, и бета-частиц с энергией 0,3МэВ по нижней границе.


Рис.6. Устройство счетчика Гейгера СБМ-20.

У данного счетчика существовали различные модификации, к примеру, СБМ-20- 1 или СБМ-20У , которые имеют похожие характеристики, но отличаются принципиальной конструкцией контактных элементов и измерительной схемой. Другие модификации этого счетчика Гейгера – Мюллера, а это СБМ-10, СИ29БГ, СБМ-19, СБМ-21, СИ24БГ имеют похожие параметры также, многие из них встречаются в бытовых дозиметрах радиации, которые можно найти в магазинах и на сегодняшний день.

С ледующая группа дозиметров радиации рассчитана на регистрацию гамма-фотонов и рентгеновского излучения . Если говорить о точности таких устройств, то следует понимать, что фотонное и гамма излучение представляет собой кванты электромагнитного излучения, которые движутся со скоростью света (порядка 300 000 км/с), поэтому зарегистрировать подобный объект представляется достаточно трудной задачей.

Эффективность работы таких счетчиков Гейгера составляет порядка одного процента.

Ч тобы повысить ее требуется увеличение поверхности катода. По сути, гамма-кванты регистрируются косвенным способом, благодаря выбитым ими электронам, которые участвуют в последствие в ионизации инертного газа. Чтобы максимально эффективно способствовать этому явлению, специально подбираются материал и толщина стенок камеры счетчика, а также размеры, толщина и материал катода. Здесь, большая толщина и плотность материала могут снизить чувствительность регистрационной камеры, а слишком малая позволит легко попадать высокочастотному бета-излучению в камеру, а также увеличит количество естественных для прибора радиационных шумов, что заглушит точность определения гамма-квантов. Естественно, что точные пропорции подбираются производителями. По сути, на данном принципе, изготавливаются дозиметры на основании счетчиков Гейгера – Мюллера для прямого определения гамма излучения на местности, при этом такой прибор исключает возможность определения любых других видов излучения и радиоактивного воздействия, что позволяет точно определить радиационную загрязненность и уровень негативного воздействия на человека только по гамма-излучению.

В отечественных дозиметрах, которые оснащены цилиндрическими датчиками, устанавливаются следующие их типы: СИ22Г, СИ21Г, СИ34Г, Гамма 1-1, Гамма – 4, Гамма – 5, Гамма – 7ц, Гамма – 8, Гамма – 11 и многие другие. Причем в некоторых типах устанавливается специальный фильтр на входном, торцевом, чувствительном окне, который специально служит для отсечения альфа и бета-частиц, и дополнительно увеличивающий площадь катода, для более эффективного определения гамма-квантов. К таким датчикам можно отнести Бета – 1М, Бета – 2М, Бета – 5М, Гамма – 6, Бета – 6М и прочие.

Ч тобы понять более наглядно принцип их действия стоит подробней рассмотреть один из таких счетчиков. К примеру, торцевой счетчик с датчиком Бета – 2М , который имеет округлую форму рабочего окна, составляющего порядка 14 квадратных сантиметров. При этом радиационная чувствительность к кобальту - 60 составляет порядка 240 имп/мкР. Данный тип счетчика имеет очень низкие показатели собственного шума , который составляет не более 1 импульса в секунду. Это возможно за счет толстостенной свинцовой камеры, которая в свою очередь рассчитана на регистрацию фотонного излучения с энергией в диапазоне от 0,05 МэВ до 3 МэВ.


Рис.7. Торцевой гамма-счетчик Бета-2М.

Для определения гамма излучения вполне можно использовать счетчики для гамма-бета импульсов, которые рассчитаны на регистрацию жестких (высокочастотных и высокоэнергетических) бета-частиц и гамма-квантов. К примеру, модель СБМ – 20. Если в этой модели дозиметра вы хотите исключить регистрацию бета-частиц, то для этого достаточно установить свинцовый экран, или щит из любого другого металлического материала (свинцовый экран эффективнее). Это наиболее распространенный способ, каким пользуются большинство разработчиков при создании счетчиков для гамма и рентгеновского излучения.

Регистрация «мягкого» бета-излучения.

К ак мы уже ранее упоминали, регистрация мягкого бета излучения (излучение с низкими энергетическими характеристиками и сравнительно небольшой частоты), достаточно трудная задача. Для этого требуется обеспечить возможность более легкого их проникновения в регистрационную камеру. Для этих целей, изготавливается специальное тонкое рабочее окно, как правило, из слюды или полимерной пленки, которое практически не создает препятствий для проникновения бета-излучения этого типа в ионизационную камеру. При этом катодом может выступать непосредственно сам корпус датчика, а анод представляет собой систему линейных электродов, которые равномерно распределены и смонтированы на изоляторах. Регистрационное окно выполнено в торцевом варианте, и на пути бета-частиц в таком случае оказывается только тонкая слюдяная пленка. В дозиметрах с такими счетчиками регистрация гамма излучения идет, как приложение и по сути, как дополнительная возможность. А если требуется избавиться от регистрации гамма-квантов, то необходимо минимизировать поверхность катода.


Рис.8. Устройство торцевого счетчика Гейгера.

С тоит отметить, что счетчики для определения мягких бета-частиц были созданы уже достаточно давно и с успехом применялись во второй половине прошлого века. Среди них наиболее распространенными были датчики типа СБТ10 и СИ8Б , которые имели тонкостенные слюдяные рабочие окна. Более современный вариант такого прибора Бета-5 имеет площадь рабочего окна порядка 37 кв/см, прямоугольной формы из слюдяного материала. Для таких размеров чувствительного элемента, прибор в состоянии регистрировать около 500 имп/мкР, если измерять по кобальту – 60. При этом эффективность определения частиц составляет до 80 процентов. Прочие показатели этого прибора выглядят следующим образом: собственный шум составляет 2,2 имп/с., диапазон определения энергий от 0,05 до 3 МэВ, при этом нижний порог определения мягкого бета-излучения составляет 0,1 МэВ.


Рис.9. Торцевой бета-гамма-счетчик Бета-5.

И естественно, стоит упомянуть о счетчиках Гейгера – Мюллера , способных регистрировать альфа-частицы. Если регистрация мягкого бета-излучения представляется достаточно сложной задачей, то зафиксировать альфа-частицу, даже имеющую высокие энергетические показатели, еще более сложная задача. Такую проблему можно решить только соответствующим уменьшением толщины рабочего окна до толщины, которой будет достаточно для прохождения альфа-частицы в регистрационную камеру датчика, а также практически полным приближением входного окна к источнику излучения альфа-частиц. Такое расстояние должно равняться 1 мм. Понятно, что такое устройство автоматически будет регистрировать любые другие типы излучения, и, причем с достаточно высокой эффективностью. В этом есть и положительная и отрицательная сторона:

Положительная – такой прибор можно использовать для самого широкого спектра анализа радиоактивного излучения

Отрицательная – за счет повышенной чувствительности, будет возникать значительное количество шумов, которые затруднят анализ полученных регистрационных данных.

К роме того, слишком тонкое слюдяное рабочее окно хотя и повышает возможности счетчика, однако в ущерб механической прочности и герметичности ионизационной камеры, тем более что само окно имеет достаточно большую площадь рабочей поверхности. Для сравнения, в счетчиках СБТ10 и СИ8Б, о которых мы упоминали выше, при площади рабочего окна около 30 кв/см, толщина слюдяного слоя составляет 13 – 17 мкм, а при необходимой толщине для регистрации альфа-частиц в 4-5 мкм, входное окно можно сделать лишь не более 0,2 кв/см., речь идет о счетчике СБТ9.

О днако, большую толщину регистрационного рабочего окна можно компенсировать близостью к радиоактивному объекту, и наоборот при сравнительно небольшой толщине слюдяного окна, появляется возможность зарегистрировать альфа-частицу на уже большем расстоянии, чем 1 -2 мм. Стоит привести пример, при толщине окна до 15 мкм, приближение к источнику альфа-излучения должно составлять менее 2 мм, при этом под источником альфа-частиц понимается излучатель плутоний – 239 с энергией излучения 5 МэВ. Продолжим, при толщине входного окна до 10 мкм, зарегистрировать альфа-частицы возможно уже на расстоянии до 13 мм, если сделать слюдяное окно толщиной до 5 мкм, то альфа-излучение будет регистрироваться на расстоянии 24 мм, и т.д. Еще один важный параметр, который напрямую влияет на возможность обнаружения альфа-частиц, это их энергетический показатель. Если энергия альфа-частицы больше чем 5 МэВ, то соответственно увеличиться расстояние ее регистрации для толщины рабочего окна любого типа, а если энергия меньше, то и расстояние требуется уменьшать, вплоть до полной невозможности зарегистрировать мягкое альфа-излучение.

Е ще одним важным моментом, позволяющим увеличить чувствительность альфа счетчика, это уменьшение регистрационной способности для гамма-излучения. Чтобы сделать это, достаточно минимизировать геометрические размеры катода, и гамма-фотоны будут проходить через регистрационную камеру не вызывая ионизации. Такая мера позволяет уменьшить влияние на ионизацию гамма-квантов в тысячи, и даже десятки тысяч раз. Устранить влияние бета-излучения на регистрационную камеру уже не представляется возможным, однако из этой ситуации есть довольно простой выход. Вначале регистрируется альфа и бета излучение суммарного типа, затем устанавливается фильтр из плотной бумаги, и совершается повторный замер, который зарегистрирует только бета-частицы. Величина альфа-излучения в этом случае рассчитывается как разность общего излучения и отдельного показателя расчета бета-излучения.

Для примера , стоит предложить характеристики современного счетчика Бета-1, который позволяет зарегистрировать альфа, бета, гамма излучения. Вот эти показатели:

  • площадь рабочей зоны чувствительного элемента 7 кв/см;
  • толщина слюдяного слоя 12 мкм, (расстояние эффективного обнаружения альфа-частиц по плутонию – 239, порядка 9 мм,. По кобальту - 60 радиационная чувствительность достигается порядка 144 имп/мкР);
  • эффективность измерения радиации для альфа-частиц - 20% (по плутонию - 239), бета-частиц – 45% (по таллию -204), и гамма-квантов – 60% (по составу стронций – 90, иттрий – 90);
  • собственный фон дозиметра составляет порядка 0,6 имп/с;
  • датчик рассчитан на регистрацию гамма-излучения с энергией в диапазоне от 0,05МэВ до 3МэВ, и бета-частиц с энергией более 0,1 МэВ по нижней границе, и альфа-частиц с энергией 5МэВ и более.

Рис.10. Торцевой альфа-бета-гамма-счетчик Бета-1.

К онечно, существует еще достаточно широкий ряд счетчиков , которые предназначены для более узкого и профессионального использования. Такие приборы имеют ряд дополнительных настроек и опций (электрические, механические, радиометрические, климатические и пр.), которые включают в себя множество специальных терминов и возможностей. Однако на них мы концентрироваться не будем. Ведь для понимания базовых принципов действия счетчиков Гейгера – Мюллера , описанных выше моделей вполне достаточно.

В ажно также упомянуть, что существуют специальные подклассы счетчиков Гейгера , которые специально сконструированы для определения различных видов другого излучения. К примеру, для определения величины ультрафиолетового излучения, для регистрации и определения медленных нейтронов, которые функционируют по принципу коронного разряда, и другие варианты, которые не относятся к данной теме напрямую, и рассматриваться не будут.

Газоразрядный счетчик Гейгера-Мюллера (Г-М). Рис.1 – это стеклянный цилиндр (баллон) заполненный инертным газом (с

примесями галогенов) под давлением несколько ниже атмосферного. Тонкий металлический цилиндр внутри баллона служит катодом К; анодом А служит тонкий проводник, проходящий по центру цилиндра. Между анодом и катодом прикладывается напряжение U В =200-1000 В. Анод и катод подключаются к электронной схеме радиометрического прибора.

Рис.1 Цилиндрический счетчик Гейгера-Мюллера.

1 – нить анода 2 – трубчатый катод

U в – источник высоковольтного напряжения

R н – нагрузочное сопротивление

С V – разделительно-накопительная емкость

Р – пересчетное устройство с индикацией

ξ – источник радиации.

С помощью счетчика Г-М можно регистрировать все частицы излучения (кроме легко поглощаемых α-частиц); чтобы β- частицы не поглощались корпусом счетчика в нем имеются прорези, закрытые тонкой пленкой.

Поясним особенности работы счетчика Г-М.

β-частицы непосредственно взаимодействуют с молекулами газа счетчика, в то время как нейтроны и γ-фотоны (незаряженные частицы) с молекулами газа взаимодействуют слабо. В этом случае механизм возникновения ионов иной.

проведем дозиметрический замер окружающей среды около точек К и А, полученные данные занесем в табл. 1.

Для проведения замера необходимо:

1. Подключить дозиметр к источнику питания (9в).

2. На тыльной стороне дозиметра закрыть задвижкой (экраном) окно детектора.

3. Установить переключатель MODE (режим) в положение γ («Р»).

4. Установить переключатель RANGE (диапазон) в положение x 1 (Р н =0,1-50 мкЗв/час).

5. Установить переключатель питания дозиметра в положение ON (Вкл.).

6. Если в положении х1 раздастся звуковой сигнал и числовые ряды дисплея полностью заполнятся, то необходимо перейти на диапазон х10 (Р н =50-500 мкЗв/час).

7. После завершения суммирования импульсов на дисплее дозиметра высветится доза, эквивалентная мощности P мкЗв/час; через 4-5 сек. произойдет сброс показаний.

8. Дозиметр вновь готов к замерам радиации. Автоматически начинается новый цикл замеров.

Таблица 1.

Результирующее значение в рабочем пространстве (АВ) определяется формулой

=
, мкЗв/час (6)

- показания дозиметра дают значения радиационного фона в точке;

Величина радиации в каждой точке замера подчиняется законам флуктуации. Поэтому, чтобы получить наиболее вероятное значение измеряемой величины, необходимо производить серию замеров;

- при дозиметрии β – излучений замеры необходимо проводить вблизи поверхности исследуемых тел.

4. Проведение измерений. П.1. Определение мощности эквивалентной дозы естественного радиационного фона.

Для определения γ-фона окружающей среды выделим (относительно каких-либо объектов (тел)) две точки А, К, расположенные друг от друга на расстоянии ~1 метр, и, не касаясь тел,

Нейтроны, взаимодействуя с атомами катода, порождают заряженные микрочастицы (осколки ядер). Гамма излучение

взаимодействует главным образом с веществом (атомами) катода, порождая фотонное излучение, которое далее ионизирует молекулы газа.

Как только в объеме счетчика появляются ионы, то под действием анодно-катодного электрического поля начнется движение зарядов.

Вблизи анода линии напряженности электрического поля резко сгущаются (следствие малого диаметра нити анода), напряженность поля резко возрастает. Электроны, подходя к нити, получают большое ускорение, возникает ударная ионизация нейтральных молекул газа , вдоль нити распространяется самостоятельный коронный разряд.

За счет энергии этого разряда, энергия первоначального импульса частиц резко усиливается (до 10 8 раз). При распространении коронного разряда часть зарядов будет медленно стекать через большое сопротивление R н ~10 6 Ом (рис.1). В цепи детектора на сопротивлении R н будут возникать импульсы тока, пропорциональный исходному потоку частиц. Возникший импульс тока передается на накопительную емкость С V (С~10 3 пикофарад), далее усиливается и регистрируется пересчетной схемой Р.

Наличие большого сопротивления R н в цепи детектора приводит к тому, что на аноде будут скапливаться отрицательные заряды. Напряженность электрического поля анода будет понижаться и в какой-то момент ударная ионизация прервется, разряд затухнет.

Важную роль в гашении возникшего газового разряда играют галогены, находящиеся в газе счетчика. Потенциал ионизации галогенов ниже, чем у инертных газов, поэтому атомы галогенов активнее «поглощают» фотоны, вызывающие самостоятельный разряд, переводя эту энергию в энергию диссипации, гася тем самостоятельный разряд.

После того как ударная ионизация (и коронный разряд) прервется, начинается процесс восстановление газа в исходное (рабочее) состояние. В течение этого времени счетчик не работает, т.е. не регистрирует пролетающие частицы. Этот промежуток

времени называется «мертвым временем» (временем восстановления). Для счетчика Г-М мертвое время = Δ t ~10 -4 секунды.

Счетчик Г-М реагирует на попадание каждой заряженной частицы, не различая их по энергиям, но, если мощность падаю

щего излучения неизменна, то скорость счета импульсов оказывается пропорциональна мощности излучения, и счетчик можно будет проградуировать в единицах доз излучения.

Качество газоразрядного самогасящегося детектора определяется зависимостью средней частоты импульсов N в единицу времени от напряжения U на его электродах при неизменной интенсивности излучения. Эта функциональная зависимость называется счетной характеристикой детектора (рис.2).

Как следует из рисунка 2, при U < U 1 приложенного напряжения недостаточно для возникновения газового разряда при попадании в детектор заряженной частицы или гамма-кванта. Начиная с напряжения U В > U 2 в счетчике возникает ударная ионизация, вдоль катода распространяется коронный разряд, счетчик фиксирует пролет почти каждой частицы. С ростом U В до U 3 (см. рис. 2) число фиксируемых импульсов несколько увеличивается, что связано с некоторым увеличением степени ионизации газа счетчика. У хорошего счетчика Г-М участок графика от U 2 до U Р почти не зависит от U В , т.е. идет параллельно оси U В , средняя частота импульсов почти не зависит U В .

Рис. 2. Счетная характеристика газоразрядного самогасящегося детектора.

3. Относительная погрешность приборов при измерении Р н : δР н = ±30%.

Поясним, как импульс счетчика преобразуются в показания дозы мощности излучений.

Доказывается, что при неизменной мощности излучений скорость счета импульсов пропорциональна мощности излучений (измеряемой дозе). На этом принципе основывается измерение дозы мощности радиации.

Как только в счетчике возникает импульс, сигнал этот передается в блок пересчета, где фильтруется по длительности, амплитуде, суммируется и результат передается на дисплей счетчика в единицах дозы мощности.

Соответствие между скоростью счета и измеряемой мощностью, т.е. градуировка дозиметра производится (на заводе) по известному источнику радиации С s 137 .

Счетчик Гейгера - основной сенсор для измерения радиации. Он регистрирует гамма-, альфа-, бета-излучение и рентгеновские лучи. Обладает самой высокой чувствительностью в сравнении с другими способами регистрации радиации, например, ионизационными камерами. Это главная причина его повсеместного распространения. Другие сенсоры для измерения радиации используются очень редко. Почти все приборы дозиметрического контроля построены именно на счетчиках Гейгера. Они выпускаются массово, и есть приборы различных уровней: от дозиметров военной приемки до китайского ширпотреба. Сейчас приобрести какой-либо прибор для измерения радиации — не проблема.

Повсеместного распространения дозиметрических приборов еще совсем недавно не было. Так к 1986 году во время чернобыльской аварии оказалось, что у населения нет просто никаких приборов дозиметрической разведки, что кстати, дополнительно усугубило последствия катастрофы. При этом, несмотря на распространение радиолюбительства и кружков технического творчества, счетчики Гейгера не продавались в магазинах, поэтому изготовление самодельных дозиметров было невозможным.

Принцип работы счетчиков Гейгера

Это электровакуумный прибор с предельно простым принципом работы. Датчик радиоактивных излучений представляет собой металлическую или стеклянную камеру с металлизацией, заполненную разряженным инертным газом. По центру камеры располагают электрод. Внешние стенки камеры подключают к источнику высокого напряжения (обычно 400 вольт). Внутренний электрод - к чувствительному усилителю. Ионизирующие излучения (радиация) представляют собой поток частиц. Они буквально переносят электроны от высоковольтного катода в нити анода. На ней просто наводится напряжение, которое можно уже измерить, подключив к усилителю.

Высокая чувствительность счетчика Гейгера обусловлена лавинообразным эффектом. Энергия, которую регистрирует усилитель на выходе, — это не энергия источника ионизирующего излучения. Это энергия высоковольтного блока питания самого дозиметра. Проникшая частица только переносит электрон (энергетический заряд, который превращается в ток, регистрируемый измерителем). Между электродами введена газовая смесь, состоящая из благородных газов: аргона, неона. Она призвана гасить высоковольтные разряды. Если возникнет такой разряд, то это будет ложное срабатывание счетчика. Последующая измерительная схема игнорирует такие выбросы. Кроме того, высоковольтный блок питания тоже должен быть от них защищен.

Схема питания в счетчике Гейгера обеспечивает ток на выходе в нескольких микроампер при выходном напряжении 400 вольт. Точное значение напряжения питания устанавливается для каждой марки счетчика по его технической спецификации.

Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения

С помощью счетчика Гейгера можно зарегистрировать и с высокой точностью измерить гамма- и бета-излучение. К сожалению, нельзя распознать вид излучения напрямую. Это делается косвенным методом с помощью установки преград между сенсором и обследуемым объектом или местностью. Гамма-лучи обладают высокой проницаемостью, и их фон не меняется. Если дозиметр засек бета-излучение, то установка разделительной преграды даже из тонкого листа металла почти полностью перекроет поток бета-частиц.

Распространенные в прошлом комплекты индивидуальных дозиметров ДП-22, ДП-24 не использовали счетчиков Гейгера. Вместо них там использовался сенсор ионизационная камера, поэтому чувствительность была очень низкой. Современные дозиметрические приборы на счетчиках Гейгера обладают в тысячи раз большей чувствительностью. С помощью них можно регистрировать естественные изменения солнечного радиационного фона.

Примечательная особенность счетчика Гейгера - чувствительность, в десятки и сотни раз превышающая необходимый уровень. Если в совершенно защищенной свинцовой камере включить счетчик, то он покажет огромный естественный радиационный фон. Эти показания не являются дефектом конструкции самого счетчика, что было проверено многочисленными лабораторными исследованиями. Такие данные - следствие естественного радиационного космического фона. Эксперимент только показывает, насколько чувствительным является счетчик Гейгера.

Специально для измерения этого параметра в технических характеристиках указывается значение «чувствительность счетчика имп мкр» (импульсов в микросекунду). Чем больше этих импульсов - тем больше чувствительность.

Измерение радиации счетчиком Гейгера, схема дозиметра

Схему дозиметра можно разделить на два функциональных модуля: высоковольтный блок питания и измерительная схема. Высоковольтный блок питания - аналоговая схема. Измерительный модуль на цифровых дозиметрах всегда цифровой. Это счетчик импульсов, который выводит соответствующее значение в виде цифр на шкалу прибора. Для измерения дозы радиации необходимо подсчитать импульсы за минуту, 10, 15 секунд или другие значения. Микроконтроллер пересчитывает число импульсов в конкретное значение на шкале дозиметра в стандартных единицах измерения радиации. Вот самые распространенные из них:

  • рентген (обычно используется микрорентген);
  • Зиверт (микрозиверт - мЗв);
  • Грей, рад,
  • плотность потока в микроваттах/м2.

Зиверт - наиболее популярная единица измерения радиации. К ней соотнесены все нормы, никаких дополнительных пересчетов проводить не требуется. Бэр - единица для определения влияния радиации на биологические объекты.

Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации

Счетчик Гейгера является газоразрядным прибором, а современная тенденция микроэлектроники - повсеместное от них избавление. Были разработаны десятки вариантов полупроводниковых сенсоров радиации. Регистрируемый ими уровень радиационного фона значительно выше, чем для счетчиков Гейгера. Чувствительность полупроводникового сенсора хуже, но у него другое преимущество - экономичность. Полупроводникам не требуется высоковольтного питания. Для портативных дозиметров с батарейным питанием они хорошо подходят. Еще одно их преимущество - регистрация альфа-частиц. Газовый объем счетчика существенно больше полупроводникового сенсора, но все равно его габариты приемлемы даже для портативной техники.

Измерение альфа-, бета- и гамма-излучения

Гамма-излучение измерять наиболее просто. Это электромагнитное излучение, представляющее собой поток фотонов (свет - тоже поток фотонов). В отличие от света у него гораздо более высокая частота и очень малая длина волны. Это позволяет ему проникать сквозь атомы. В гражданской обороне гамма-излучение — это проникающая радиация. Она проникает сквозь стены домов, автомобили, различные сооружения и задерживается только слоем земли или бетона в несколько метров. Регистрация гамма-квантов проводится с градуировкой дозиметра по естественному гамма-излучению солнца. Источников радиации не требуется. Совсем другое дело с бета- и альфа-излучением.

Если ионизирующиее излучение α (альфа-излучение) исходит от внешних объектов, то оно почти безопасно и представляет собой поток ядер атомов Гелия. Пробег и проницаемость этих частиц небольшая — нескольких микрометров (максимум миллиметров) — в зависимости от проницаемости среды. Ввиду этой особенности оно почти не регистрируется счетчиком Гейгера. В то же время регистрация альфа-излучения важна, так как эти частицы чрезвычайно опасны при проникновении внутрь организма с воздухом, пищей, водой. Для их декретирования счетчики Гейгера используются ограничено. Больше распространены специальные полупроводниковые сенсоры.

Бета-излучение отлично регистрируется счетчиком Гейгера, потому что бета-частица представляет собой электрон. Она может пролететь сотни метров в атмосфере, но хорошо поглощается металлическими поверхностями. В связи с этим счетчик Гейгера должен иметь окошко из слюды. Металлическая камера изготавливается с небольшой толщиной стенки. Состав внутреннего газа подбирается таким образом, чтобы обеспечить небольшой перепад давления. Детектор бета-излучения ставится на выносном зонде. В быту такие дозиметры мало распространены. Это в основном военная продукция.

Индивидуальный дозиметр с счетчиком Гейгера

Этот класс приборов обладает высокой чувствительностью в отличие от устаревших моделей с ионизационными камерами. Надежные модели предлагаются многими отечественными производителями: «Терра», «МКС-05», «ДКР», «Радэкс», «РКС». Это все автономные приборы с выводом данных на экран в стандартных единицах измерения. Есть режим показания накопленной дозы облучения, так и мгновенного уровня фона.

Перспективное направление - бытовой дозиметр-приставка к смартфону. Такие устройства выпускают зарубежные производители. У них богатые технические возможности, есть функция хранения показаний, калькуляции, пересчета и суммирования излучения за дни, недели, месяцы. Пока что из-за низких объемов производства стоимость этих приборов довольно высокая.

Самодельные дозиметры, зачем они нужны?

Счетчик Гейгера является специфическим элементом дозиметра, совершенно недоступным для самостоятельного изготовления. Кроме того, он встречается только в дозиметрах или продается отдельно в магазинах радиотоваров. Если этот датчик есть в наличии, все остальные компоненты дозиметра могут быть собраны самостоятельно из деталей разнообразной бытовой электроники: телевизоров, материнских плат и др. На радиолюбительских сайтах, форумах сейчас предлагается около десятка конструкций. Собирать стоит именно их, поскольку это самые отработанные варианты, имеющие подробные руководства по настройке и наладке.

Схема включения счетчика Гейгера всегда подразумевает наличие источника высокого напряжения. Типичное рабочее напряжение счетчика - 400 вольт. Его получают по схеме блокинг-генератора, и это самый сложный элемент схемы дозиметра. Выход счетчика можно подключить к усилителю низкой частоты и подсчитывать щелчки в динамике. Такой дозиметр собирается в экстренных случаях, когда времени на изготовление практически нет. Теоретически, выход счетчика Гейгера можно подключить к аудиовходу бытовой аппаратуры, например, компьютера.

Самодельные дозиметры, пригодные для точных измерений, все собираются на микроконтроллерах. Навыки программирования здесь не нужны, так как программа записывается готовой из бесплатного доступа. Сложности здесь типичные для домашнего электронного производства: получение печатной платы, пайка радиодеталей, изготовление корпуса. Все это решается в условиях небольшой мастерской. Самодельные дозиметры из счетчиков Гейгера делают в случаях, когда:

  • нет возможности приобрести готовый дозиметр;
  • нужен прибор со специальными характеристиками;
  • необходимо изучить сам процесс постройки и наладки дозиметра.

Самодельный дозиметр градуируется по естественному фону с помощью другого дозиметра. На этом процесс постройки заканчивается.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них