Регулирование отпуска тепла. Методы регулирования отпуска теплоты из систем централизованного теплоснабжения

В системах централизованного теплоснабжения регулирование отпуска теплоты осуществляется:

a) На ТЭЦ или районной котельной – центральное регулирование;

б) На ЦТП и ИТП – местное регулирование.

В зависимости от регулируемого параметра различают три метода регулирования:

а) качественное – величина теплового потока регулируется изменением температуры теплоносителя при постоянном расходе;

б) количественное – величина теплового потока регулируется изменением расхода теплоносителя при постоянной температуре;

в) качественно- количественное – величина теплового потока регулируется как изменением расхода теплоносителя, так и его температуры.

В курсовом проекте следует руководствоваться общепринятым принципом регулирования отпуска теплоты для жилых районов: на источнике осуществляется центральное качественное регулирование, в ЦТП и ИТП – местное количественное.

Целью расчета регулирования отпуска теплоты является определение температуры сетевой воды в подающем и обратном трубопроводах тепловой сети в зависимости от температуры наружного воздуха. Эта зависимость изображается графически и называется температурным отопительным графиком. График строится в координатах τ - t H ; и каждому значению температуры наружного воздуха (t H) соответствует определенное значение температуры сетевой воды в подающем трубопроводе (τ о1); в обратном трубопроводе (τ о2); в подающем стояке системы отопления (τ 03).

Формулы расчета τ 01 , τ 02 , τ 03 приведены в . Результаты расчета сводятся в таблицу 3.

Таблица 3 – Температурный отопительный график

Пример построения графика приведен в .

Отпуск теплоты по данному температурному графику может осуществляться только для жилых районов с отопительной и вентиляционной нагрузкой. При наличии в районе централизованной системы горячего водоснабжения в отопительный график вводится корректировка. Для обеспечения требуемой температуры горячей воды в точках водоразбора зданий, температура воды в подающем трубопроводе тепловой сети не должна быть ниже 70 0 С в закрытой системе и не менее 60 0 С в открытой системе теплоснабжения .

Точка пересечения температурного графика τ 1 с максимально допустимой температурой в подающем трубопроводе (70 градусов Цельсия или 60 градусов Цельсия) называется точкой излома температурного графика и обозначается τ" о1 (τ" о2 и τ" 03). Точке излома τ 1 ΄ соответствует определенная температура наружного воздуха t" Н. Температурный график с введенной корректировкой называется комбинированным отопительным графиком.

Трасса тепловой сети

На плане жилого района нанести трассу тепловой сети от источника теплоснабжения до каждого квартала. Рекомендуется применять радиальную схему тепловой сети. При трассировке следует стремиться к наименьшей протяженности сети и двухсторонней нагрузке магистралей. В каждый квартал следует предусматривать по одному вводу и только в отдельные крупные кварталы допускается по два ввода. Подключение противолежащих кварталов целесообразно осуществлять в одной точке.

В пределах городской застройки прокладку тепловых сетей по архитектурным условиям следует принять подземную канальную.По территории вне городской черты прокладку тепловой сети студент может выбрать по своему усмотрению подземную или надземную на низких опорах.

Гидравлический расчет тепловой сети

Задачей гидравлического расчета является определение диаметров труб и потерь давления в них.

Расчетный расход сетевой воды для определения диаметров труб в водяных тепловых сетях следует определять отдельно для отопления, вентиляции и горячего водоснабжения с последующим суммированием этих расходов .

Для проведения гидравческого расчета составляется расчетная схема сети, на которой показывается источник теплоснабжения, трасса тепловой сети (одной линией) и подсоединяемые к ней ЦТП или узловые камеры кварталов.

Трассу разбивают на расчетные участки, указывая на каждом номер, длину и расход теплоносителя.

Расход сетевой воды по жилым кварталам распределяют пропорционально их тепловой нагрузке (или площади). В целях сокращения однотипных расчетов разрешается выполнить гидравлический расчет магистрального направления (от источника до самого удаленного квартала) и одного ответвления трассы.

Для предварительного расчета удельные потери давления (R Λ) могут быть приняты для участков магистрального направления до 80 Па/м, для участков ответвления трассы до 300 Па/м.

Расчет начинают с головного участка, т.е. от источника до первого ответвления. По расчетному расходу теплоносителя на участке и предварительно принятым удельным потерям давления по таблице или номограмме для гидравлического расчета находят диаметр трубопровода. По таблицам 3.4 и 3.7 “ Трубы стальные” выбирают стандартный диаметр трубы близкий к предварительно полученному по номограмме. Для стандартной трубы уточняют удельные потери давления и скорость движения теплоносителя. Для рассматриваемого участка разрабатывают схему, на которой указывают трубопроводы, арматуру, неподвижные опоры, компенсаторы, углы поворота, переходы . Выделяют виды местных сопротивлений и подсчитывают эквивалентную длину участка. Расчеты сводят в таблицу 4. Закончив расчет первого участка, переходят к расчету второго и т.д. участков.

Таблица 4 – Гидравлический расчет водяной тепловой сети

Схема тепловой сети

Разработка схемы сети ведется параллельно с гидравлическим расчетом. Трубопроводы тепловой сети на схеме показываются двумя параллельными линиями и обозначаются Т1 и Т2. Подающий трубопровод Т1 располагается обязательно справа по ходу теплоносителя от источника. Все точки ответвлений закрепляются неподвижными опорами и обозначаются УТ – узлы трубопроводные . На ответвлениях тепловой сети устанавливается запорная арматура – стальные задвижки, для обслуживания которых предусматриваются тепловые камеры. Расстояние между двумя УТ (в начале и конце расчетного участка) разбивается неподвижными опорами на компенсационные участки. Расстояние между неподвижными опорами принимается в зависимости от диаметра трубопровода и типа компенсирующих устройств и не должно превышать указанного в таблице 5. Между двумя неподвижными опорами должно быть предусмотрено компенсирующее устройство. На участке от источника до жилого района целесообразно применять П- образные компенсаторы, по территории жилого района- сальниковые. Углы поворота трассы от 90 до 130 градусов должны быть использованы для самокомпенсации тепловых удлинений. Если между двумя УТ имеется угол поворота трассы, то первоначально закрепляют неподвижными опорами плечи угла, суммарная длина плеч не должна превышать расстояния указанного в таблице 5. Плечи угла могут быть как равными по величине, так и различными. Углы поворота больше 130 градусов закрепляются неподвижными опорами.

От источника по трассе тепловой сети должны быть предусмотрены секционирующие задвижки, места установки которых указаны в . Учитывая рельефные условия, в отдельных УТ необходимо предусматривать трубопроводы и арматуру для спуска воды и выпуска воздуха из труб тепловой сети .

Таблица 5 – Расстояния между неподвижными опорами трубопроводов

(при канальной и надземной прокладке) в метрах

Условный проход труб, Д У,мм Компенсаторы П-образные Участки самокомпенсации Компенсаторы сальниковые
Расстояние между неподвижными опорами, при параметрах теплоносителя Т=150 0 С, Р=1,6 МПа
-
-
80,100 -
150,175
250,300
400,450
600,700,800

Пьезометрический график

График выполняют по результатам гидравлического расчета на листе миллиметровой бумаги размером 20 х 30 см. В нижней части листа наносят в масштабе развернутый план трассы. Слева проводят вертикальную ось, на которой в выбранном масштабе наносится шкала напоров Н в м. Над планом трассы строят рельеф местности на основании отметок горизонталей, указанных на плане района города и ТЭЦ. На рельефе местности показывают 5-12 этажные здания.

На оси Н, в точке расположения ТЭЦ откладывают от рельефа местности 5-25 м – это будет напор перед сетевыми насосами. От этой точки проводят горизонтальную линию до конца первого расчетного участка и вертикально вверх откладывают величину потерь напора на первом участке. Полученную точку соединяют с точкой напора перед сетевыми насосами на оси Н. Полученная линия характеризует изменение напора на данном расчетном участке. Для последующих участков построение проводится аналогично. В результате получают ломанную прямую линию изменения величины напора в обратном трубопроводе тепловой сети. В конечной точке сети следует отложить вверх величину располагаемого напора для квартала. В закрытой системе теплоснабжения располагаемый напор на ЦТП рекомендуется в размере 25-30 м, в открытой системе располагаемый напор в узловой камере квартала должен быть 20-25 м. Полученная точка характеризует величину напора в подающем трубопроводе перед ЦТП или узловой камерой. От этой точки строят линию напора в подающем трубопроводе путем зеркального отображения линии напора обратного трубопровода. От точки, характеризующей величину напора в подающем трубопроводе на выходе из ТЭЦ, следует отложить потери напора в тепло подготовительной установке источника в размере 10-15 м.

Линия нижнего пьезометра не должна пересекать условно обозначенные здания. Если это условие не выполняется, весь пьезометр следует поднять вверх, обеспечивая при этом избыточное давление не менее 5 метров в системе отопления самого высокого здания . Линия статического давления проводится в соответствии с .

Выбор насосов

Сетевые насосы предназначены для обеспечения создания циркуляции воды в системе теплоснабжения. Следовательно гидравлический режим системы определяется точкой пересечения гидравлических характеристик насоса и сети.

Характеристика тепловой сети представляет собой квадратичную параболу, проходящую через начало координат. Характеристику сети строят в системе координат H-V. На характеристике сети отмечают точку R, соответствующую расчетному режиму.

Сетевой насос выбирают по напору и производительности . Характеристики сетевых насосов марки СЭ приведены в . Характеристика насоса переносится в систему координат H-V. Точка пересечения характеристик сети и насоса должна быть вблизи точки R, рисунок 1. Часто получается, что одного насоса недостаточно, тогда принимают два насоса и выбирают схему их включения. При параллельном включении насосов суммарная характеристика строится путем сложения расходов (подач) при одних и тех же напорах. При последовательном включении суммарная характеристика получается путем сложения напоров при одних и тех же расходах.

2


Рисунок 1 – Гидравлическая характеристика сети (1) и насоса (2)

Число сетевых насосов следует принимать не менее двух, один из которых является резервным.

Подпиточные насосы устанавливаются для восполнения утечки воды в тепловой сети, а в открытой системе еще обеспечивают подачу воды на горячее водоснабжение. Напор и подача (производительность) подпиточных насосов определяется по формулам .

Число подпиточных насосов принимается в закрытой системе теплоснабжения не менее двух, один из которых является резервным, в открытой системе – не менее трех, один из которых также является резервным.

Классификация режимов регулирования

ОТПУСК ТЕПЛОТЫ

Тепловая нагрузка абонентов не постоянна. Она изменяется в зависимости от метеорологических условий (t н, Q инс, ν в и т.д.), режима расхода воды на горячее водоснабжение, режима работы технологического оборудования и т.д. Для обеспечения высокого качества теплоснабжения, а также экономических режимов выработки теплоты на станции и транспорта ее по тепловым сетям выбирается соответствующий метод регулирования.

1. В зависимости от места осуществления регулирования различают центральное, групповое, местное и индивидуальное регулирование:

а) центральное регулирование производится на станции или в котельной по преобладающей нагрузке, характерной для большинства абонентов. В городе такой нагрузкой является нагрузка на отопление Q о или совместная нагрузка на отопление и горячее водоснабжение Q о + Q гв. На ряде промышленных предприятий преобладающей нагрузкой является нагрузка на технологию Q тех;

б) групповое регулирование производится в ЦТП для группы однородных потребителей. В ЦТП поддерживаются требуемые расходы и температура теплоносителя, поступающие в распределительные или во внутриквартальные сети;

в) местное регулирование предусматривается на вводе в дом для дополнительной корректировки параметров теплоносителя с учетом местных факторов;

г) индивидуальное регулирование осуществляется непосредственно у теплопотребляющих приборов (у нагревательных приборов) и дополняет другие виды регулирования.

В городе применяется не менее трех ступеней регулирования: центральное; групповое или местное; индивидуальное.

Тепловая нагрузка многочисленных абонентов современных систем теплоснабжения неоднородна не только по характеру теплопотребления, но и по параметрам теплоносителя. Поэтому центральное регулирование дополняется групповым, местным и индивидуальным, т.е. осуществляется комбинированное регулирование.

д) комбинированное регулирование состоит из нескольких ступеней регулирования, взаимодополняющих друг друга. Обеспечивает наиболее полное соответствие между отпуском теплоты и ее потреблением.

2. По способу осуществления регулирования может быть автоматическим и ручным.

3. По методу регулирование тепловой нагрузки различают: качественное регулирование, количественное регулирование и качественно-количественное регулирование.

Сущность методов регулирования вытекает из уравнений теплового баланса

Из уравнения следует, что регулирование нагрузки возможно несколькими способами. Принципиально возможно изменение пяти параметров: F нп, К нп, G , Т 1 , n (час ).


Регулирование изменением поверхности нагрева приборов F и коэффициента теплопередачи К сложно и неэффективно. Регулирование временем отпуска теплоты или временем нагрева нагревательных приборов возможно лишь при строго однородной нагрузке, т.к. перерывы в подаче теплоты могут быть недопустимы для других потребителей. Таким образом, практически тепловую нагрузку можно центрально регулировать только путем изменения Т 1 или G . При этом надо иметь ввиду, что возможный диапазон изменения Т 1 и G в реальных условиях ограничен рядом обстоятельств.

При разнородной тепловой нагрузке нижним пределом Т 1 является температура, требуемая для горячего водоснабжения (60 ºС – в открытых системах и 70 ºС – в закрытых). Верхний предел Т 1 определяется дополнительным давлением в подающей линии тепловой сети из условий невскипания воды.

Верхний предел G определяется располагаемым напором на ЦТП и гидравлическим сопротивлением абонентских установок:

а) качественное регулирование заключается в регулировании отпуска теплоты путем изменения Т 1 на входе а прибор для сохранения постоянного расхода теплоносителя:

G = const; Т 1 = var;

б) количественное регулирование заключается в регулировании отпуска теплоты путем изменения расхода теплоносителя при постоянной температуре на входе в установку:

G = var; Т 1 = const;

в) качественно-количественное регулирование заключается в регулировании отпуска теплоты путем одновременного изменения расхода и температуры теплоносителя:

Т 1 = var, G = var.

При автоматизации абонентских вводов основное применение в городах имеет в настоящее время центральное качественное регулирование, дополняемое в ЦТП или ИТП количественным регулированием или регулированием пропусками.

Частным случаем количественного регулирования является регулирование пропусками. В этом случае регулирование достигается путем периодического отключения абонентов.

В паровых системах теплоснабжения качественное регулирование неприемлемо ввиду того, что изменение температуры в необходимом диапазоне требует большого изменения давления. Центральное регулирование паровых систем производится, в основном, количественным методом или пропусками. Однако периодическое отключение приводит к неравномерному прогреву отдельных приборов и к заполнению системы воздухом.

Общее уравнение для регулирования отопительной нагрузки при зависимых схемах присоединения установок к тепловым сетям имеет вид:

; (4.2)

(4.3)

1. Качественное регулирование.

Дано : Q ор, Т 1р, Т 2р, G ор.

Определить : Т 1 = f 1 (t н);

Т 2 = f 2 (t н).

Решение . Из уравнений теплового баланса:

. (4.4)

Учитывая то, что = ; = ;

Получим:

. (4.5)

Коэффициент теплопередачи нагревательных приборов определяется по формуле:

; (4.6)

для радиаторов е → 0 → ;

а – постоянная для каждого типа нагревательных приборов;

m – постоянная, зависящая от типа нагревательных приборов и способа обвязки; , обычно m = 0,25 для современных нагревательных приборов.

Подставим выражение для К нп и получим:

. (4.7)

Учитывая, что для элеватора , , получим:

;

Из 1 = 2 определяем:

; (4.9)

Из 1 = 3 с учетом 4 определяем:

, ; (4.10)

; (4.11)

. (4.12)

Рис. 4.1 . График качественного регулирования

Если система отопления присоединяется непосредственно без смесителя, то коэффициент смешения U = 0, следовательно график поднимется вверх.

При воздушном отоплении коэффициент теплопередачи не зависит от перепада температур, а зависит от скорости движения теплоносителя и весовой скорости воздуха:

, (4.13)

поэтому коэффициент m = 0, U = 0, следовательно получается уравнение первой степени, на графике это прямая линия.

В независимых схемах в нагревательные приборы системы отопления вода поступает после теплообменного аппарата.

Рис. 4.2 . Незави

симая схема присоединения

системы отоп-

ления к тепло-

Расчет режима регулирования для независимой системы отопления также основан на уравнениях теплового баланса:

. (4.15)

Зависимость расхода от тепловой нагрузки описывается эмпирической формулой , где n – показатель степени, зависящий от метода регулирования:

при качественном регулировании n = 0, ;

при количественном регулировании n ≥ 1;

при качественно-количественном регулировании 0 < n < 1.

Регулирование нагрузки приводит к изменению расходов и температур теплоносителя в теплообменнике. При нерасчетных условиях обычно известны температуры теплоносителей на входе в установку и неизвестны на выходе. Поэтому уравнение тепловой нагрузки теплообменника неудобно для расчетов, т.к. неизвестно выражение , которое определяется методом подбора.

По методике Е.Я.Соколова расчет теплообменных аппаратов облегчается при использовании так называемых тепловых характеристик теплообменников, когда:

, (4.16)

где ε – безразмерная удельная тепловая нагрузка (коэффициент эффективности);

G м – меньшее значение расхода из теплообменных средств;

Максимальная разность температур между греющей и нагреваемой средой.

Для водоводяных теплообменников (при противотоке):

, (4.17)

где Ф – параметр подогревателя; для данного подогревателя Ф = const при любом режиме.

; (4.18)

При качественном регулировании , т.к. . Тогда:

2. Качественно-количественное регулирование.

Дано : , , зависимость расхода от отопительной нагрузки выражается уравнением , где n – коэффициент, позволяющий устранить влияние переменного гравитационного давления на разрегулировку системы: 0,33 – для двухтрубных систем отопления, 0,2-0,25 – для однотрубных систем отопления.

Определить : Т 1 , Т 2 , G о = f i (t н).

Решение . Задаваясь , определяем , затем определяем Т 1 и Т 2:

; (4.21)

Из 1 = 3 с учетом 4 получим:

; (4.22)

Из 1 = 2 с учетом 4 и 5 получим:

Если m = 0,25, то , (4.24)

т.е. G о и G тс изменяется по гравитационному закону.

Рис. 4.3 . График регулирования тепловой нагрузки: 1 – качественно-

количественный; 2 - качественный

Осуществить плавное изменение расхода воды практически невозможно. В современных насосах глубокое изменение расхода происходит за счет изменения скорости вращения двигателя и соответственно изменения числа оборотов.

В этом случае применяется ступенчатое регулирование (рис. 4.4 ). В результате отопительный сезон делится на несколько диапазонов, в каждом из которых поддерживается постоянный расход воды.

В холодный период система работает с расчетным расходом воды. При увеличении температуры наружного воздуха расход воды уменьшается. Переменный расход обеспечивается работой нескольких насосов различной производительности. Ступенчатое изменение расхода воды приводит к ступенчатому изменению температуры. При уменьшении расхода воды Т 1 чуть выше, а Т 2 чуть ниже, чем при отопительном графике.

Расход воды в системе может быть уменьшен на 30-40 % . Исследования показали, что в этом случае разрегулировка вертикальная незначительна.

Рис. 4.4 . График ступенчатого регулирования тепловой нагрузки

Поэтому расход воды в системе уменьшают до ; далее он постоянен. Число ступеней при выбирают в зависимости от оборудования.

Ступенчатое регулирование тепловой нагрузки позволяет уменьшить расход электроэнергии на перекачку теплоносителя, но при увеличении температуры в сети уменьшается отбор пара в турбине.

3. Количественное регулирование.

Дано : Т 1 = const.

Определить : Т 2 , G о = f i (t н).

Регулирование поверхностью нагрева происходит за счет подтопления нагревательных приборов.

Решение.

Из 1 = 2 получим: (4.26)

Из 1 = 3 с учетом 4 получим:

,

где . (4.27)

Уравнения 4 и 5 справедливы при Т 2 ≥ t в.

При уменьшении нагрузки и уменьшении расхода воды температура обратного трубопровода сети стремится к температуре t в. Дальнейшее понижение теплоотдачи достигается заполнением части нагревательного прибора водой с температурой равной температуре внутреннего воздуха t в.

Недостатки: разрегулировка системы отопления из-за изменения расхода воды.

Достоинства: сокращение электроэнергии на перекачку теплоносителя. Этим пользуются при присоединении систем отопления по независимой схеме или через смесительные подстанции. В этом случае в системе отопления сохраняется режим качественного регулирования в течение всего отопительного сезона. При уменьшении расхода сетевой воды насосы увеличивают подачу воды из обратки, следовательно нет разрегулировки.

Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?» . Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха . Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье ). По данному графику работают тепловые сети в Уфе (Башкирия).

Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5 , то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 о С .

Как правило, используются следующие температурные графики: 150/70 , 130/70 , 115/70 , 105/70 , 95/70 . Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.

Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70 , значит при -10 о С температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 о С при графике 105/70 или 65,3 о С при графике 95/70. Температура воды после системы отопления должны быть 51,7 о С.

Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 о С, а на ТЭЦ или котельной задается 87 градусов.


Температура
наружного
воздуха
Тнв, о С
Температура сетевой воды в подающем трубопроводе
Т1, о С
Температура воды в подающем трубопроводе системы отопления
Т3, о С
Температура воды после системы отопления
Т2, о С
150 130 115 105 95
8 53,2 50,2 46,4 43,4 41,2 35,8
7 55,7 52,3 48,2 45,0 42,7 36,8
6 58,1 54,4 50,0 46,6 44,1 37,7
5 60,5 56,5 51,8 48,2 45,5 38,7
4 62,9 58,5 53,5 49,8 46,9 39,6
3 65,3 60,5 55,3 51,4 48,3 40,6
2 67,7 62,6 57,0 52,9 49,7 41,5
1 70,0 64,5 58,8 54,5 51,0 42,4
0 72,4 66,5 60,5 56,0 52,4 43,3
-1 74,7 68,5 62,2 57,5 53,7 44,2
-2 77,0 70,4 63,8 59,0 55,0 45,0
-3 79,3 72,4 65,5 60,5 56,3 45,9
-4 81,6 74,3 67,2 62,0 57,6 46,7
-5 83,9 76,2 68,8 63,5 58,9 47,6
-6 86,2 78,1 70,4 65,0 60,2 48,4
-7 88,5 80,0 72,1 66,4 61,5 49,2
-8 90,8 81,9 73,7 67,9 62,8 50,1
-9 93,0 83,8 75,3 69,3 64,0 50,9
-10 95,3 85,6 76,9 70,8 65,3 51,7
-11 97,6 87,5 78,5 72,2 66,6 52,5
-12 99,8 89,3 80,1 73,6 67,8 53,3
-13 102,0 91,2 81,7 75,0 69,0 54,0
-14 104,3 93,0 83,3 76,4 70,3 54,8
-15 106,5 94,8 84,8 77,9 71,5 55,6
-16 108,7 96,6 86,4 79,3 72,7 56,3
-17 110,9 98,4 87,9 80,7 73,9 57,1
-18 113,1 100,2 89,5 82,0 75,1 57,9
-19 115,3 102,0 91,0 83,4 76,3 58,6
-20 117,5 103,8 92,6 84,8 77,5 59,4
-21 119,7 105,6 94,1 86,2 78,7 60,1
-22 121,9 107,4 95,6 87,6 79,9 60,8
-23 124,1 109,2 97,1 88,9 81,1 61,6
-24 126,3 110,9 98,6 90,3 82,3 62,3
-25 128,5 112,7 100,2 91,6 83,5 63,0
-26 130,6 114,4 101,7 93,0 84,6 63,7
-27 132,8 116,2 103,2 94,3 85,8 64,4
-28 135,0 117,9 104,7 95,7 87,0 65,1
-29 137,1 119,7 106,1 97,0 88,1 65,8
-30 139,3 121,4 107,6 98,4 89,3 66,5
-31 141,4 123,1 109,1 99,7 90,4 67,2
-32 143,6 124,9 110,6 101,0 94,6 67,9
-33 145,7 126,6 112,1 102,4 92,7 68,6
-34 147,9 128,3 113,5 103,7 93,9 69,3
-35 150,0 130,0 115,0 105,0 95,0 70,0

Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.

Расчет температурного графика

Методика расчета температурного графика описана в справочнике (Глава 4, п. 4.4, с. 153,).

Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т 1 , Т 3 , Т 2 и т. д.

К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.

Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:

  • расчетная температура в подающем трубопроводе тепловой сети Т 1
  • расчетная температура в обратном трубопроводе тепловой сети Т 2
  • расчетная температура в подающем трубопроводе системы отопления Т 3
  • Температура наружного воздуха Т н.в.
  • Температура внутри помещения Т в.п.
  • коэффициент «n » (он, как правило, не изменен и равен 0,25)
  • Минимальный и максимальный срез температурного графика Срез min, Срез max .

Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.

Диаграммы также перестроятся под новые значения.

Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.

  • метеорологических условий;
  • режимов работы теплопотребляющего оборудования;
  • состояния воздушной среды в промышленных и жилых зданиях;
  • характера разбора воды для горячего водоснабжения.

Однако в каждый момент времени потребители должны получать требующееся количество теплоты.

Так как основное количество полезной теплоты Q п отпускается через поверхность нагрева разнообразных теплообменных аппаратов и рассчитывается по соотношениям

Q п = K×F×Δt×n, Q п =G×(c 1 ×τ 1 - c 2 ×τ 2),

то регулировать отпуск теплоты можно, воздействуя на любой из сомножителей (здесь K - коэффициент теплопередачи через поверхность нагрева теплообменника; F - площадь поверхности нагрева аппарата; Δt - температурный напор, достаточно точно определяемый как разность средней температуры проходящего через аппарат греющего теплоносителя и средней температуры нагреваемой им среды; n – время работы аппарата за рассматриваемый отрезок времени; G - расход греющего теплоносителя; τ 1 и τ 2 - температуры теплоносителя на входе и выходе из аппарата; c 1 и c 2 - удельные теплоемкости теплоносителя при этих температурах).

При индивидуальном регулировании, воздействуя на любой из сомножителей или на их комплекс, можно очень точно удовлетворять запросы потребителя к количеству и качеству теплоты. Однако это потребует установки сложной и дорогостоящей регулирующей аппаратуры на каждом аппарате.

При централизованном регулировании изменение температуры и расхода теплоносителя на выходе из источника теплоты приводит к соответствующим изменениям ∆t и K в каждом присоединенном к СТС теплообменном аппарате. Это позволяет существенно сократить затраты на авторегуляторы, но обеспечивает точное удовлетворение теплотой только одного вида потребителей, использующих одинаковые типы теплообменников. Для потребителей других видов или с другими типами теплообменников количество поступающей теплоты будет отличаться от потребности в ней.

Для достижения высокой точности, при приемлемых экономических показателях, в современных СЦТ используют одновременно три уровня регулирования.

В паровых СЦТ:

  • централизованно регулируют давление пара на выходе из энергетического источника, добиваясь постоянства давления пара на входе в ЦТП при изменениях паропотребления;
  • на ЦТП корректируют давление на входе в распределительные паропроводы к цехам;
  • на входе в каждый аппарат дросселируют пар, изменяя его давление и температуру конденсации для соответствия между подведенной и необходимой теплотой.

В водяных СЦТ:

  • централизованно регулируют температуру и расход горячей воды на выходе из источника теплоснабжения для обеспечения запросов отопительных систем;
  • местное регулирование на ЦТП и ИТП корректирует параметры и расход для всех видов тепловой нагрузки обслуживаемых групп потребителей;
  • индивидуальное регулирование осуществляют изменениями расходов теплоносителей через каждый теплопотребляющий аппарат.

При централизованном регулировании в водяных тепловых сетях используют следующие методы воздействия на ∆t и K:

  • качественный метод, при котором, сохраняя постоянство расходов воды для систем отопления – G о, изменяют ее температуру на входе в тепловую сеть – τ о.1 ;
  • количественный метод, при котором, сохраняя постоянство температуры теплоносителя на входе в тепловую сеть – τ о.1 р, изменяют ее расход;
  • количественно - качественный метод, при котором на входе в тепловую сеть изменяют и температуру, и расход теплоносителя. Для жилых районов и предприятий, получающих теплоту из двухтрубных водяных тепловых сетей, используется только качественный метод центрального регулирования отопительной нагрузки.

Количественный или количественно-качественный методы используют для корректировочной регулировки различных видов нагрузки на ЦТП, ИТП и теплообменных аппаратах.

Методика 1 – методика получения расчетных зависимостей для изменения параметров теплоносителя при централизованном качественном регулировании отопительной нагрузки включает следующие этапы:

1-А. Выбирают расчетные параметры наружного воздуха и греющего теплоносителя.

Для систем отопления и вентиляции конкретного региона расчетная температура наружного воздуха - t нх Б5 , °С, принимается из табл.2.7 или из СНиП 23-01-99 «Строительная климатология». При этой температуре определяется необходимая площадь поверхности нагрева отопительных приборов и калориферов,

Расчетное значение температуры теплоносителя на входе в тепловую сеть - τ о.1 р, °С (при выбранной t нх Б5) принимают после технико-экономических обоснований в пределах τ о.3 р < τ о.1 р < 150°С. Расчетное значение температуры теплоносителя на входе в отопительные приборы - τ о.3 р,°С, определяется из табл. 2.3 или [ 3 ]. Расчетное значение температуры теплоносителя на выходе из отопительных приборов - τ о.2 р, °С, должно выбираться на основе технико-экономических обоснований в пределах t в.р о < τ о.2 р < τ о.3 р. Однако в зданиях, построенных в настоящее время и в предшествующие периоды, площадь поверхности установленных отопительных приборов позволяет охлаждать сетевую воду только до температуры τ о.2 р =70 °С. Поэтому для СЦТ с большим количеством функционирующих зданий принимают τ о.2 р =70 °С.

1-Б. Определяют характеристику изменения коэффициента теплопередачи отопительных приборов - K о, кДж/(с×м 2 ×°С), при изменениях температуры теплоносителя.

Для отопительных приборов и конвекторов, при постоянстве расхода теплоносителя, изменение K о подчиняется зависимости

K о =А о ×Δt о m , (2.113)

где А о - постоянный коэффициент, зависящий только от типа отопительного прибора и схемы его подключения, кДж/(с×м 2 ×(°С) (1+m)); Δt о =0,5×(τ о.3 + τ о.2)-t в.р о - разность между средней температурой теплоносителя в отопительном приборе и температурой внутреннего воздуха в отапливаемом помещении, °С; m - безразмерный показатель степени, постоянный для конкретного типа прибора и схемы его подключения. Для разных типов приборов m находится в пределах 0,17 < m < 0,33 [ 3 ].

Для большинства схем подключения и типов приборов m = 0,25, что и принимают для централизованного регулирования. А корректировку для других схем подключения и типов приборов производят у индивидуальных аппаратов.

1-В . Получают расчетные зависимости метода качественного регулирования систем водяного отопления.

Для района с известными значениями V зд, м 3 ; q о, кВт/(м 3 ×°С); μ зд.ж р, рассчитанными по (2.8) и (2.37а), составляют балансовые уравнения расхода теплоты на отопление жилого здания - Q о.зд.ж, кВт, при произвольном значении температуры наружного воздуха t н и при ее расчетном значении t н.х Б.5 - Q о.зд.ж р:

Это система из двух независимых уравнений с тремя неизвестными (t н,τ 0.3 ,τ 0.2). Принимая 1+ m = 1,25, решают систему уравнений (2.115) относительно температуры τ 0.2 при различных значениях t i:

При присоединении отопительной системы здания к тепловой сети по зависимой схеме через элеватор (рис. 2.2.1, а), сетевая вода от источника теплоснабжения подается с температурой τ 0.1 >τ 0.3 . Коэффициент инжекции элеватора сохраняет постоянное значение во всем диапазоне качественного регулирования, определяемое уравнением

Рис.2.9.1 По уравнениям (2.117), (2.118), (2.120) и по построенным с их использованием графикам (рис. 2.9.1) при любом значении температуры наружного воздуха t н вычисляют величины температур τ 0.1 , τ 0.2 , τ 0.3 при качественном регулировании отопительной нагрузки жилого района.

Рис. 2.9.1. Графики изменения температуры (а) и расхода (б) сетевой воды при качественном регулировании отопительных систем:

___________ – водяное отопление; - - - - - - – воздушное отопление без тепловыделений в цехах; – . – . – . – . – . – . – – то же с тепловыделениями; 1 – τ 0.1 =f(t н); 2 – τ 0.2 =f(t н); 3 – τ 0.3 =f(t н)

1-Г . Получают расчетные зависимости метода качественного регулирования систем воздушного отопления цехов промпредприятий как тех, в которые не поступает теплота внутренних тепловыделений, так и в тех, где имеются значительные тепловыделения.

В помещениях промышленных предприятий широко используют системы воздушного отопления с безэлеваторным присоединением водовоздушных калориферов к тепловым сетям (см. рис. 2.2.2). Особенностью этих систем является постоянство величины коэффициента теплопередачи калориферов при любых изменениях t н.

В случае получения теплоты для отопления цехов от собственного источника теплоснабжения уравнения для регулирования температуры отпускаемой им сетевой воды имеют вид:

  • для цехов без внутренних тепловыделений
τ 0.2 тв = t в.р о + (τ 0.2 р -t в.р о)*[(t в.р о -t н)*Σ i=1 i=Mн *(1+μ п ср)*10 -3 -Q тв ]/[(t в.р о -t н.х Б.5)*Σ i=1 i=Mн *(1+μ п ср)*10 -3 -Q тв ] (2.124)

Графики изменения температур и расхода этих систем представлены на рис. 2.9.1.

Методика 2 – методика регулирования отпуска теплоты в водяных тепловых сетях, одновременно обеспечивающих потребителей с разнородными видами теплопотребления.

В подавляющем большинстве двухтрубных водяных сетей горячая вода из подающей трубы одновременно поступает в системы отопления, вентиляции и горячего водоснабжения (см. рис. 2.1.1).

Различие в требованиях к температурам сетевой воды, предъявляемых разнородными потребителями, вводит ограничения на используемые методы централизованного регулирования, вынуждая переходить на их комбинирование в ходе отопительного периода. В таких сетях метод качественного регулирования отопительной нагрузки применяется в интервале изменения температуры наружного воздуха t н.х Б.5 ≤ t н ≤ t н.и (I зона). Здесь t н.и - температура наружного воздуха, при которой величина t[], вычисляемая по (2.120), (2.121), (2.123), понижается до τ 0.1.и = 70ºС (при использовании закрытой системы горячего водоснабжения) или до τ 0.1.и = 60ºС (при открытой).

В интервале температур наружного воздуха t н.и ≤ t н ≤ t в.р о (II зона) потребность отопительных систем в теплоте удовлетворяется при τ 0.1 = τ 0.1.и = const и местном изменении продолжительности их подключения к тепловой сети. Температуры τ 0.3 = τ 0.3.и и τ 0.2 = τ 0.2.и тоже остаются постоянными (рис. 2.9.2).

Рис. 2.9.2. Графики изменения температуры (а) и расхода (б) сетевой воды в системах отопления, вентиляции и горячего водоснабжения:

___________ – водяное отопление и горячее водоснабжение с параллельным включением подогревателей; . . . . . . . – системы вентиляции; – . – . – . – . – . – . – – смешанное включение подогревателей горячего водоснабжения

Время подключения отопительной системы здания к тепловой сети - n 0 , ч/сут:

n 0 =24×(t в.р о -t н)/(t в.р о -t н.и). (2.125)

2-А . Режим потребления теплоты для открытой системы теплоснабжения.

Получают расчетные зависимости регулирования отпуска теплоты для открытой системы горячего водоснабжения (рис. 2.1.1). В открытых системах горячего водоснабжения к потребителям поступает смесь воды из подающей трубы тепловой сети с температурой τ 0.1 , определяемой по (2.120) или (2.121) и из обратной трубы с температурой τ 0.2 , определяемой по (2.117) или (2.122).

Расход сетевой воды на горячее водоснабжение из подающего трубопровода G г п ]и из обратного трубопровода G г п, кг/с:

G г п =Q г.в ср.н (t г -τ 0.2)/[(t г -t х)С(τ 0.1 -τ 0.2),

G г о =Q г.в ср.н (τ 0.1 -t г)/[(t г -t х)С(τ 0.1 -τ 0.2).

2-Б. Режим потребления теплоты для закрытой системы теплоснабжения при параллельном включении подогревателей системы горячего водоснабжения и системы отопления.

В этом случае в систему горячего водоснабжения (рис. 2.4.5) поступает сетевая вода с температурой τ 0.1 , определяемой по (2.120) или (2.121); необходимо вычислить температуру воды, сливаемой из системы, – t г.2 и ее расход G г. Расчетным значением температуры наружного воздуха для определения минимально необходимой площади поверхности нагрева подогревателей является температура t н.и. При этой температуре с учетом технико-экономических расчетов задают температуру сливающейся из подогревателей сетевой воды в период прохождения максимальной часовой нагрузки Q г р. Обычно эта температура находится в диапазоне t г.2.и р = (30–35) ºС.

Определив расчетную разность температур в подогревателях

Δt г р =[(τ 0.1.и -t г)-(t г.2.и р -t х)]/ln[(t г -t х)/(t г.2.и р -t х)],

расчетные расходы сетевой G г.и р и водопроводной G г.в р воды, поступающей в подогреватели

G г.и р =Q г р /[С(τ 0.1.и -τ г.2.и р)]; G г.в р =Q г р /[С(t г -t х ],

вычисляют расчетное значение коэффициента теплопередачи – К г р =А г ×(G г.в р) 0,5 ×(G г.и р) 0,5 и максимально необходимую площадь поверхности нагрева подогревателей F г = Q г.1 р /(К г р ×Δt г р) .

При изменении в течение суток потребления на цели горячего водоснабжения подогретой водопроводной воды изменяется и потребление сетевой воды – G г, и ее температура – τ г.2.и.

График регулирования ориентирован на удовлетворение средненедельной потребности в теплоте – Q г ср.н. Для его построения необходимо установить значения τ г.2.и и Q г.и ср.н, в связи с чем составляется отношение уравнения теплового баланса подогревателей при температуре t н.и в часы прохождения средненедельной тепловой нагрузки Q г ср.н к аналогичному уравнению при прохождении расчетного значения тепловой нагрузки Q г р:

G г.и ср.н =Q г.в ср.н *С(τ 0.1.и -τ г.2.и).

На основе уравнения теплового баланса подогревателей при средненедельной нагрузке и любом произвольном значении температуры t н в I зоне, а также аналогичного уравнения при температуре t н.и получается соотношение

τ г.2 =τ 0.1 -(τ 0.1.и -τ г.2.и)×[(τ 0.1 -t г)-(τ г.2 р -t х)]/[Δt г.и ср.н *ln[(τ 0.1 -t г)/(τ г.2 р -t х)] 2 (2.128)

Во II зоне τ г.2 =τ г.2.и. Характер изменения τ г.2 в I и II зонах представлен на рис. 2.9.2.

2-В. Режим потребления теплоты для закрытой системы теплоснабжения при последовательно-параллельном включении подогревателей системы горячего водоснабжения и системы отопления.

Как и в случае 2-Б, за расчетную температуру наружного воздуха при проектировании этой системы принимают t н.и, а расчетная тепловая нагрузка составляет Q г р.

При выборе поверхности нагрева подогревателя первой ступени задаются температурой нагрева в ней водопроводной воды t пр р =τ 0.2.и р -(5-10), °С. Определяют: расчетную тепловую нагрузку первой ступени - Q г.1 р =G г.в р ×C×(t пр р -t х.з); расчетную нагрузку второй ступени - Q г.2 р =G г.в р

Вычислив расчетную логарифмическую разность температур в подогревателях каждой ступени

Δt г.1 р =[(τ 0.2.и р -t пр р)-(τ 2.и р -t х.з)]/, Δt г.2 р =[(τ 0.1.и р -t г)-(τ 0.2.и р -t пр р)]/,

определяют для них площади поверхности нагрева:

F г.1 = Q г.1 р /(К г.1 р ×Δt г.1 р) и F г.2 = Q г.2 р /(К г.2 р ×Δt г.2 р).

Графики расхода сетевой воды, поступающей во вторую ступень, - G г.2 ср.н и температуры сетевой воды после подогревателя первой ступени - τ 2 ср.н строят для постоянной тепловой нагрузки Q 2 ср.н при различных значениях t н в границах I зоны.

С этой целью, по аналогии с выражением (2.126), составляют отношение балансовых уравнений первой и второй ступени и из них определяют численные значения t пр.и, τ 2.и, τ 0.2.и, G г.2.и.

После их нахождения, раздельно для первой и второй ступени, а также для системы в целом, составляют уравнения отношений тепловых балансов при средненедельной нагрузке и любом произвольном значении t н в первой зоне, к аналогичному балансу при t н.и:

/ =(t пр -t х.з)/(t пр.и -t х.з)

= [(G о +G г.2)/(G о +G г.2.и)] 0,5 *[(τ 0.2 -t пр)-(τ 2 -t х.з)]/Δt г.1.и ;

(2.129)
=(t г -t пр)/(t г -t пр.и)

0,5 *[(τ 0.1 р -t г)-(τ 0.2 -t пр)]/Δt г.2.и ;

(2.130)
1= /= [(G о +G г.2)/(G о +G г.2.и)] 0,5 *[(τ 0.2 -t пр)-(τ 2 -t х.з)]/Δt г.1.и + 0,5 *[(τ 0.1 р -t г)-(τ 0.2 -t пр)]/Δt г.2.и . (2.131)

Решая эту систему уравнений, получают изменение значений τ 2 и G г.2 от t н в первой зоне. Во второй зоне τ 2 =τ 2.и и G г.2 = G г.2.и остаются постоянными. Характер этих изменений показан на рис. 2.9.2.

2-Г. Режим потребления теплоты для закрытой системы теплоснабжения при последовательном включении подогревателей системы горячего водоснабжения и системы отопления.

Расчетные зависимости регулирования отпуска теплоты в систему горячего водоснабжения при последовательной схеме включения ее подогревателей и отопительной системы изложены в .

2-Д. Режим потребления теплоты для системы теплоснабжения при включении системы вентиляции.

Получают расчетные зависимости регулирования отпуска теплоты для системы вентиляции (рис. 2.1.1). В двухтрубных водяных тепловых сетях вода из подающего трубопровода поступает в водовоздушные калориферы вентиляционных установок с температурой τ 0.1 . Коэффициент теплопередачи этих калориферов К в =А в ×(ρ×W в.з) P ×(W в) L, где ρ×W в.з – удельный массовый расход воздуха, проходящего через калориферы, кг/(м 2 ×с); W в – скорость движения сетевой воды, проходящей через калорифер, м/с; А в, P, L - постоянные величины, принимаемые по .

Для системы вентиляции помещений коэффициент теплопередачи в вентиляционных калориферах К в =А в * ×(В п) P ×(W в) L, где В п - массовый расход воздуха, проходящего через калорифер, кг/с. Для большинства типов калориферов показатели степени P = 0,5; L = 0,15.

Расчетная температура наружного воздуха для проектирования вентиляции t н = t н.х Б.5 , а максимальное количество теплоты, переданное в калорифере, - Q в р = В п ×С в.з (t в.п - t н.х Б.5). При t н = t н.х Б.5 температуру сетевой воды на выходе из калорифера на основании технико-экономических расчетов принимают равной τ в.2 р = (50…70 °С). Расчетная разность температур в калорифере Δt в р =0,5×(τ 0.1 р +τ в.2 р - t в.п - t н.х Б.5), где t в.п - температура воздуха перед вентилятором, °С.

Определив требуемую поверхность калориферов F в =Q в р /(К в ×Δt в р), переходят к определению характера изменений температуры τ в.2 и расхода G в в I зоне.

Составляя отношение теплового баланса калорифера вентиляционных установок при любом значении t н (не выходящем за пределы I зоны температурного графика) к аналогичному тепловому балансу при t н.х Б.5 , получают

Тепловая нагрузка на отопление и вентиляцию изменяется в за­висимости от температуры наружного воздуха. Расход теплоты на го­рячее водоснабжение не зависит от температуры наружного воздуха. В этих условиях необходимо регулировать параметры и расход тепло­носителя в соответствии с фактической потребностью абонентов.

4.1. Температурный график сетевой воды

При наличии разнородной нагрузки (отопление, вентиляция и ГВС) в общей тепловой сети расчет и построение температурного графика сетевой воды проводят по преобладающей тепловой нагрузке и для самой распространенной схемы присоединения абонентских ус­тановок. Преобладающей, как правило, является отопи­тельная нагрузка. Предпочтительной системой регулирования тепловой нагрузки является качественное регулирование, когда изменение тепловой нагрузки на отопление при изменении температуры наружного воздуха производится за счет изменения температуры сетевой воды при неизменном расходе. Такое регулирование производится на источнике теплоты.

Расчетные температуры сетевой воды в подающем и обратном трубопроводе ( - температуры теплоносителя в подающем и обратном трубопроводе и в системе отопления при ее зависимом присоединении соответственно) на коллекторах источника теплоты соответствуют расчетной температуре наружного воздуха и задаются при проектировании системы теплоснабжения , например, 150/70, 130/70 и т.д. Если тепловая нагрузка однородна, в частности, отопительная, то во всем диапазоне наружных температур можно проводить качественное регулирование. При этом тепловая нагрузка прямо пропорциональна температуре теплоносителя в подающем трубопроводе и обратно пропорциональна температуре наружного воздуха. Поэтому на температурном графике зависимости температур сетевой воды в подающем и обратном трубопроводе изображаются при однородной нагрузке и качественном регулировании прямыми линиями. За начальную точку этих прямых принимают температуру наружного воздуха +20 0 С (+18), когда тепловая нагрузка равна нулю. Тогда температуры сетевой воды в подающем и обратном трубопроводе тоже будет +20 0 С (+18). Конечными точками будут соответственно . При зависимом присоединении системы отопления на графике будет третья прямая, соединяющая начальную точку с расчетной температурой .

При наличии нагрузки горячего водоснабжения (гвс) температура воды в подающем трубопроводе не может быть снижена ниже 60 0 С при присоединении системы гвс по открытой схеме и ниже 70 0 С при присоединении по закрытой схеме, т. к. температура воды в водоразборных приборах должна быть от 55 0 С до 65 0 С, а в теплообменнике гвс теряется порядка 10 0 С. Таким образом, на температурном графике производится отсечка, как показано на рис.4 и 5. На графике регулирования закрытой схемы системы теплоснабжения температура наружного воздуха, соответствующая отсечке, , делит график на две области: область качественного регулирования II и область количественного регулирования I. На графике регулирования открытой системы теплоснабжения в зоне качественного регулирования появляется зона III, когда температура воды в обратном трубопроводе достигает 60 0 С и разбор воды на горячее водоснабжение производится только из него.

Рисунок 4. Температурный график регулирования открытой зависимой системы теплоснабжения

Рис.5 Температурный график регулирования закрытой независимой системы теплоснабжения

Наличие или отсутствие на графике регулирования ломаной зависит от того, является ли система теплоснабжения зависимой (рис. 4) или независимой (рис. 5).

Если , то регулирование рационально проводить по совместной нагрузке на отопление и горячее водоснабжение. При этом строится так называемый повышенный температурный график регулирования, позволяющий компенсировать повышенный расход тепла на горячее водоснабжение за счет увеличения разности температур прямой и обратной воды по сравнению с графиком регулирования по отопительной нагрузке.

При построения повышенного графика расход тепла на горячее водоснабжение принимается балансовым:

где - балансовый коэффициент, принимаемый обычно равным величине 1.2.

Вид графика представлен на рис.6.

Рисунок 6. Повышенный температурный график регулирования.

На рисунке: - температуры теплоносителя на коллекторах ТЭЦ; - температуры теплоносителя по отопительному графику; - температура теплоносителя в системах отопления.

Величины

Связаны уравнениием

(10)

Здесь, расчетная разность температур сетевой воды по отопительному графику

В начале определяется величина из уравнения

. (11)

Температура водопроводной воды после первой ступени подогревателя системы гвс где =5…10 о C – величина недогрева воды в подогревателе.

4.2. Расчет и построение графиков расхода сетевой воды

4.2.1. Расчетный расход сетевой воды на отопление:

(12)

где с=4,19 кДж/(кг×К) - теплоемкость воды.

В зоне качественного регулирования II расход теплоносителя на отопление постоянный, в зоне количественного регулирования I падает с ростом температуры наружного воздуха до 0 при +20 (18) 0 С (рис. 5 и 6).

4.2.2. Расчетный расход сетевой воды на вентиляцию:

определяется по (13):

(13)

Характер графика расхода на вентиляцию повторяет ход графика расхода на отопление (рис. 6 и 7).

4.3.3 Расход сетевой воды на горячее водоснабжение:

В открытых сетях теплоснабжения средний часовой расход воды на горячее водоснабжение будет:

(14)

В закрытых системах теплоснабжения средний часовой расход на горячее водоснабжения определяется по (13, 14).

При параллельной схеме присоединения водоподогревателей

(15)

Температура воды после параллельно включенного водоподогревателя горячего водоснабжения в точке излома графика температур воды; рекомендуется принимать = 30 °С.

При двухступенчатых системах присоединения водоподогревателей

, (16)

где - температура воды после первой ступени подогрева при двухступенчатых схемах присоединения водоподогревателей, °С.

По отношению к зонам регулирования температурного графика системы теплоснабжения расходы ведут себя следующим образом.

В зоне количественного регулирования I при постоянной температуре в подающем трубопроводе с учетом средней нагрузки на горячее водоснабжение расход сетевой воды на горячее водоснабжение остается постоянным и при открытой, и при закрытой системе теплоснабжения (рис. 5 и 6).

Эти расходы сетевой воды определяются следующим образом.

В зоне качественного регулирования (II, III – при открытой схеме и II – при закрытой) характер кривых существенно различается.

При открытой схеме в зоне II сетевая вода на горячее водоснабжение разбирается из подающего и обратного трубопроводов. Из подающего трубопровода расход сетевой воды уменьшается от максимальной величины при температуре наружного воздуха до нуля при температуре наружного воздуха . Наоборот, расход сетевой воды из обратного трубопровода меняется от нуля до максимального значения при тех же температурах наружного воздуха. В зоне III разбор сетевой воды на горячее водоснабжение идет только из обратного трубопровода и несколько падает по мере роста температуры воды от 60 до 70 0 С (рис. 5).

При закрытой схеме присоединения системы горячего водоснабжения теплообмен между системами теплоснабжения и горячего водоснабжения происходит в одноступенчатом (на подающей магистрали) или в двухступенчатом (на обеих магистралях) теплообменнике. В зоне II расход сетевой воды на горячее водоснабжение уменьшается от максимального при до нуля при для двухступенчатого теплообменника (рис. 6, сплошная линия) и до величины

(17)

(рис. 6, штриховая линия).

Затем, для наглядности, строится график суммарных расходов сетевой воды (рис. 7 и 8) согласно условию

. (18)

Рисунок 7. График расходов открытой тепловой сети

Рисунок 8. График расходов закрытой тепловой сети (сплошная линия – двухступенчатый подогрев горячей воды: штриховая – одноступенчатый).

Необходимый для гидравлического расчета тепловой сети расчетный расход сетевой воды в двухтрубной сети в открытых и закрытых системах теплоснабжения определяется по формуле (19):

. (19)

Коэффициент, учитывающий долю среднего расхода воды при регулировании по отопительной нагрузке., принимаемый из следующих соображений:

· открытая система: 100 и более МВт =0.6, менее 100МВт, =0.8;

· закрытая система: 100 и более МВт =1.0, менее 100МВт, =1.2.

При регулировании по совмещенной нагрузке отопления и горячего водоснабжения при корректированном графике регулирования коэффициент принимают равным 0.

При проектировании тепловых сетей в задачу гидравлического расчета входит определение диаметров трубопроводов и падения дав­ления по участкам и в целом по магистрали. Расчет ведется в два этапа: предварительный и поверочный.

5.1. Порядок проведения гидравлического расчета

Исходными данными для расчета являются: расчетная схема (см. рис. 1); расчетные расходы сетевой воды по участкам; вид и коли­чество местных сопротивлений на каждом участке.

Одним из основных параметров, определяющих гидравлическое сопротивление, является скорость воды в трубопроводах. В магист­ральных сетях скорость воды рекомендуют принимать в пределахl¸2 м/с, а в распределительных трубопроводах - 3¸5 м/с.

На первом, предварительном, этапе определяется расчетный ди­аметр трубопровода по принятым значениям скорости воды w и удельного падения давления . Для магистральных трубопрово­дов значение £ 80 Па/м, для распределительных сетей и ответв­лений =100¸300 Па/м. Условный диаметр рассматриваемого участка определяется с помощью номограммы для гидравлического расчета трубопровода (Приложение П) по расходу воды и принятому удельному падению давления . Т. к. точка пересечения на номограмме не попадает на какую-либо линию стандартного диаметра, то необходимо сместиться по линии расходов вверх или вниз до пересечения с линией стандартного диаметра. Если смещаться вверх, то выбирается меньший стандартный диаметр, но реальное удельное линейное сопротивление оказывается больше, а если вниз – то диаметр больше, а сопротивление меньше. Обычно, на участках трубопровода, близких к теплоисточнику переходят на большие диаметры, а ближе к концу магистрали – на меньшие. Необходимо также отслеживать, чтобы скорости воды на участке трубопровода не вышли за указанные пределы. Полученные фактические значения удельного линейного сопротивления и скорости движения воды заносятся в таблицу 2.

Таблица 2

Гидравлический расчет теплосети

Продолжение таблицы 2

Гидравлический расчет теплосети

По расчетной схеме и выбранной трассе трубопроводов опреде­ляются типы и количество местных сопротивлений: арматуры, отво­дов, компенсаторов и пр. По приложению П8 в зависимости от услов­ного диаметра и типа местных сопротивлений определяется эквива­лентная длина местных сопротивлений и заносится в таблицу 2. Расчетная длина участка трубопровода определяется суммированием фактической и эквивалентной длины.

Падение давления на расчетном участке вычисляется по формуле (20), Па:

(20)

где - длина расчетного участка, м;

Суммарная эквивалентная длина местных сопротивлений на дан­ном участке.

Потери напора на участке составят:

где =975 кг/м 3 - плотность воды при температуре 100 °С;

g =9,81 м/с 2 - ускорение свободного падения.

Полученные величины заносятся в графы поверочного расчета (таб. 2). Аналогично рас­считываются все участки магистрали.

Расчет ответвлений проводится так же, как участок магистрали, нос заданным падением давления (напора), определяемым после построения пьезометрического графика как разность напоров в подающей и обратной магистрали в точке присоединения ответвлеиия.

Также, как и для магистрали, для конкретного рассчитываемого ответвления измеряется длина трубопроводов от точки ответвления до самого дальнего потребителя (абонента) - l отв , м. Для этого ответвления протяженностью l отв предварительно удельное линейное падение давления, Па/м:

(22)

где ; Z - опытный коэффициент местных сопротивлений для ответвлений (для водоводов Z =0,03¸0,05); G отв - расчетный рас­ход теплоносителя на начальном участке ответвления, кг/с; - разность располагаемой падения давления на ответвлении и требуемого перепада давлений у последнего абонента, Па; - фактическая длина ответвления в двухтрубном исполнении.

При сложной схеме распределительных сетей ответвление делит­ся на участки аналогично разделению на участки магистральной сети.

4.2. Построение пьезометрического графика

Пьезометрический график строится на основании гидравлическо­го расчета (таб. 2). Пьезометрический график сети позволяет уста­новить взаимное соответствие рельефа местности, высоты абонент­ских систем и потерь напора в трубопроводах. По пьезометрическому графику можно определить напор в любой точке сети, располагаемый напор в местах ответвлений и на вводе в абонентские системы, а также провести корректировку схем присоединения абонентских сис­тем и действующие напоры в прямой и обратной магистралях сети.

Пьезометрический график строится в масштабе в координатах L-H (L - длина трассы, м; Н - напор, м). За начало координат при­нимается точка 0 , соответствующая установке сетевых насосов (рис. 6). Вправо от точки 0 вдоль оси L (линия I-I , отметка 0.0) нано­сится профиль трассы в соответствии с рельефом местности вдоль основной магистрали и ответвлений. Здесь принимается, что профиль трассы совпадает с рельефом местности. При несложной схеме теп­лоснабжения и небольшом числе абонентских вводов (не более 20) на ответвлениях и магистрали наносятся высоты зданий (абонентских систем). По оси ординат из точки 0 откладывается напор в метрах.

Построение пьезометрического графика начинают с гидростати­ческого режима, когда циркуляция воды в системе отсутствует, а вся система теплоснабжения, включая системы отопления или тепло­обменники систем отопления, заполнена водой с температурой до 100°С. Статическое давление в тепловой сети H ст обеспечивается подпиточными насосами. Линию статического напора S-S на графике проводят из условия прочности чугунных радиаторов, т.е. 60 м. Статическое давление должно быть выше высоты присоединенных зда­ний к системе теплоснабжения, а также обеспечить невскипание воды в тепловой сети. Если хотя бы одно из условий для абонентских вводов не соблюдается, необходимо предусмотреть разделение тепло­вой сети на зоны с поддержанием в каждой зоне своего статического давления.

Необходимый подпор современных сетевых насосов находится в пределах 10¸25 м из условия подавления кавитации на всасе в на­сос, а полный напор подпиточных насосов H ст =40¸60 м. Данное значение

Н ст откладывается по оси Н от точки 0 до А. От точки А начинается построение пьезометрического графика для обратной магистрали в динамическом режиме на основании данного гидравлического расчета. С точки А откладывается длина первого расчетного участка 0 – I (0 I). Далее по оси Н откладывается расчетная величина гидравлических потерь Δ Н І (точка 0 1 ). Выполняя описанные действия, определяем последовательно все точки пьезометрического графика обратной магистрали (точки 0 , 0 1 , 0 2 и т.д.).

От последней точки пьезометрического графика обратной ма­гистрали (точка 0 4 ) откладывается необходимый располагаемый напор у последнего абонентаDH аб » 15¸20 м при наличии элеватора или DH аб » 10м+H зд - при безэлеваторном подключении (точка П 4 ). Пьезометрический график прямой магистрали строится от точки П 4 в обратной последовательности по участкам сети. Соединяя все найденные точки (А,0 1 ,0 2 , ... ) получим пьезометрический график обратной магистрали. При правильных расчетах и построении пьезометрический график должен быть прямолинейным. В точке П , соответс­твующей месторасположению источника теплоты, вверх откладывается потеря напора в сетевых подогревателяхDH П =10¸20 м или в водо­грейном котлеDH П =15¸30 м.

Рисунок 9. Пьезометрический график и схема тепловой сети:

I - сетевой насос; II - подпиточный насос; III - теплоподготови-тельная установка; IV - регулятор давления; V - подпиточный бак.

5. ВЫБОР СХЕМ ПРИСОЕДИНЕНИЯ АБОНЕНТСКИХ СИСТЕМ ОТОПЛЕНИЯ К ТЕПЛОВОЙ СЕТИ

Пьезометрический график позволяет выбрать схему присоедине­ния абонентских установок к теплосети с учетом располагаемого пе­репада давлений и ограничений по избыточному давлению в трубопро­водах.

На рис. 10 представлены схемы присоединения абонентских отопительных систем к тепловой сети. Схемы (а), (б) и (в) представляют собой зависимые присоединения. Схема (а) используется в том случае, когда имеется центральный или групповой тепловой пункт, где готовится теплоноситель с требуемыми параметрами и перед системой отопления необходимо отрегулировать только давление. Рис.10б - элеваторная схема присоединения применяется при условии, что напор в обратной магистрали не превышает допус­тимого для местных отопительных систем, а располагаемый напор на вводе достаточен для работы элеватора (15¸18 м).

Если напор в обратной магистрали не превышает допустимого, а располагаемый напор недостаточен для работы элеватора, применяют зависимую схему со смесительным насосом (Рис.10в).

Если напор в обратной магистрали в статическом или динами­ческом режиме превышает допустимый напор для местных систем отоп­ления, применяют независимую схему с установкой водоводяного теплообменника (Рис.10г).

Обозначения на схеме:

ПК – пиковый котел; ТП – теплофикационный подогреватель; СН – сетевой насос; ПН – подпиточный насос; РР – регулятор расхода; Д – диафрагма; В - воздушник (кран Маевского); Э – элеватор; Н – смесительный насос; РТ – регулятор температуры; ТО – теплообменник системы отопления; ЦН – циркуляционный насос; РБ – расширительный бак.

На рис. 11 представлены схемы присоединения системы горячего водоснабжения к системе теплоснабжения.




Рисунок 11. Присоединение систем горячего водоснабжения к системе теплоснабжения


6. ВЫБОР НАСОСОВ

6.1. Выбор сетевых насосов

Сетевые насосы устанавливаются на источнике теплоты, их ко­личество должно быть не менее двух, из которых один резервный. Производительность всех рабочих насосов принимается равной сум­марному расходу сетевой воды с учетом коэффициента запаса насоса по производительности (1,05-1,1).

Напор сетевых насосов определяется по пьезометрическому гра­фику и равен, м:

H с.н. =H ст +DH п +DH о +DH аб,

где H ст - потери напора на станции, м;

DH п - потери напора в подающей линии, м;

DH аб - располагаемый напор у абонента,м;

DH о - потери напора в обратной линии, м.

Выбор насосов выполняется для отопительного и неотопительно­го периодов. При наличии подкачивающих насосов в сети напор сете­вых насосов уменьшается на напор подкачивающих насосов.

6.2. Выбор подпиточных насосов

Производительность подпиточных насосов определяется величи­ной потерь сетевой воды в системе теплоснабжения. В закрытых сис­темах потери сетевой воды составляют 0,5 % объема воды в сетях, м 3 /ч:

G подп. =0,005×V+G гвс,

где V=Q×(V с +V м) - объем воды в системе теплоснабжения, м 3 ; Q - тепловая мощность системы теплоснабжения, МВт; V с , V м - удельные объемы сетевой воды, находящейся в наружных сетях с подогрева­тельными установками и в местных системах, м 3 /МВт (V с =10¸20, V м =25).

Список литературы

1. Айзенберг И.И., Баймачев Е.Э., Выгонец А.В. и др. Учебное пособие по дипломному проектированию для студентов специальности 270109 – ТВ. – Иркутск: Иркутский дом печати, 2007, - 104 с.