Компенсация температурных удлинений. Компенсация температурных деформаций трубопроводов

В процессе эксплуатации трубопроводы изменяют свою температуру в связи с изменением температуры окружающей среды и перекачиваемых жидкостей. Колебание температуры стенки трубопровода приводит к изменению его длины.

Закон изменения длины трубопровода выражается уравнением

Δ=α · l (t y - t o ),

где Δ - удлинение или укорочение трубопровода; а - коэффициент линейного расширения металла труб (для стальных труб α = 0,000012 1/°С); l - длина трубопровода; t y - температура укладки трубопровода; t 0 - температура окружающей среды.

Если концы трубопровода жестко закреплены, то от температурных воздействий в нем возникают термические напряжения растяжения или сжатия, величина которых определяется по закону Гука

где Е - модуль упругости материала трубы (для стали) E = 2,1·10 6 кг/см 2 =2,1·10 5 МПа).

Эти напряжения вызывают в точках закрепления трубопровода усилия, направленные вдоль оси трубопровода, не зависящие от длины, и равные

где σ - напряжение сжатия и растяжения, возникшее в трубе от изменения температуры; F - площадь живого сечения материа­ла трубы.

Величина N может быть очень большой и привести к раз­рушению трубопровода, арматуры, опор, а также нанести повре­ждения оборудованию (насосам, фильтрам и т.п.) и резервуарам.

Изменения длины подземных трубопроводов зависят не только от колебаний температуры, но и от силы трения трубы о грунт, которая препятствует изменениям длины.

Если усилия от термических напряжений не зависят от длины трубопровода, то сила трения трубы о грунт прямо про­порциональна длине трубопровода. Существует такая длина, на которой силы трения могут уравновеситься с термической силой, и трубопровод не будет иметь изменения длины. На участках меньшей длины трубопровод будет передвигаться в грунте.

Предельная длина такого участка 1 max , на котором возмож­но перемещение трубопровода в грунте, определяется по уравне­нию

где δ - толщина стенки трубы, см; k - давление грунта на по­верхность трубы, кг/см 2 ; μ - коэффициент трения трубы о грунт.

5.2. Компенсаторы

Разгрузка трубопроводов от термических напряжений осу­ществляется установкой компенсаторов. Компенсаторы - уст­ройства, позволяющие трубопроводам свободно удлиняться или сокращаться при изменении температуры без повреждения со­единений. Применяются линзовые, сальниковые, гнутые компен­саторы.

При выборе трассы трубопроводов необходимо стремиться к тому, чтобы температурные удлинения одних участков могли бы восприниматься деформациями других, т.е. стремиться к са­мокомпенсации трубопровода, используя для этого все его повороты и изгибы.

Линзовые компенсаторы (рис. 5.5) применяются для ком­пенсации удлинений трубопроводов с рабочим давлением до 0,6 МПа при диаметре от 150 до 1 200 мм.

Рис. 5.5. Компенсаторы линзовые с двумя фланцами

Компенсаторы изготавливают из конических тарелок (штампованных), каждая пара сваренных между собой тарелок образует волну. Количество волн в компенсаторе делают не более 12 во избежание продольного изгиба. Компенсирующая способ­ность линзовых компенсаторов составляет до 350 мм.

Линзовые компенсаторы характеризуются герметичностью,малыми габаритами, простотой изготовления и эксплуатации, но применение их ограничено непри­годностью для больших давлений. Сальниковые компенсато­ры (рис. 5.6) являются осевыми компенсаторами и применяются для давлений до 1,6 МПа. Компен­саторы состоят из чугунного или стального корпуса и входящего в него стакана. Уплотнение между стаканом и корпусом создается сальником. Компенсирующая спо­собность сальниковых компенсации ров составляет от 150 до 500 мм.

Сальниковые компенсатора устанавливаются на трубопроводе с точной укладкой, так как возможные перекосы могут привести к заеданию стакана и разрушения компенсатора. Сальниковые компенсаторы ненадежны в отношение герметичности, требуют постоянного надзора за уплотнением сальников и в связи с этим имеют ограниченное применение. Эти компенсаторы устанавливаются на трубопроводах диаметром от 100 мм и выше для негорючих жидкостей и на паропроводах.

Гнутые компенсаторы имеют П-образную (рис. 5.7), лирообразную, S-образную и другие формы и изго­тавливаются на месте монтажа из тех труб, из которых собирается тру­бопровод. Эти компенсаторы пригод­ны для любых давлений, уравновеше­ны и герметичны. Недостатками их являются значительные габариты.

Современным способом продления срока эксплуатации трубопроводных систем является использование компенсаторов. Они помогают предотвратить различные изменения, которые происходят в трубах из-за постоянного перепада температур, давления и разного рода вибраций. Отсутствие компенсаторов на трубах может привести к таким нежелательным последствиям, как изменение длины трубы, ее расширение либо сжатие, что в дальнейшем приводит к прорыву трубопровода. В этой связи проблеме надежности трубопроводов и компенсаторов уделяется самое пристальное внимание и осуществляется поиск оптимальных решений по обеспечению технической безопасности компенсационных систем.

Существуют компенсаторы трубные, сальниковые, линзовые и сильфонные. Наиболее простым способом является применение естественной компенсации за счет гибкости самого трубопровода с использованием при этом колен П-образной формы. П-образные компенсаторы применяются при надземных и канальных прокладках трубопроводов. Для них при надземной прокладке требуются дополнительные опоры, а при канальной - специальные камеры. Всё это приводит к значительному удорожанию трубопровода и вынужденному отчуждению зон дорогостоящей земли.

Сальниковые компенсаторы, которые до недавнего времени чаще всего использовались в российских теплосетях, тоже имеют ряд серьезных недостатков. С одной стороны, сальниковый компенсатор может обеспечить компенсацию любых по величине осевых перемещений. С другой стороны, сейчас не существует сальниковых уплотнений, способных обеспечивать герметичность трубопроводов с горячей водой и паром в течение длительного времени. В связи с этим требуется регулярное обслуживание сальниковых компенсаторов, но даже это не спасает от протечек теплоносителя. А поскольку при подземной прокладке теплопроводов для установки сальниковых компенсаторов требуются специальные камеры обслуживания, это значительно усложняет и делает более дорогим строительство и эксплуатацию теплотрасс с компенсаторами такого типа.

Линзовые компенсаторы применяются, в основном, на тепло-, газовых магистралях, водо- и нефтепроводах. Жесткость этих компенсаторов такова, что для их деформации требуются значительные усилия. Тем не менее, линзовые компенсаторы обладают весьма низкой компенсирующей способностью по сравнению с другими типами компенсаторов, к тому же трудоемкость их изготовления достаточно высока, а большое количество сварных швов (что вызвано технологией изготовления) снижает надежность этих устройств.

Учитывая данное обстоятельство, актуальным в настоящее время становится применение компенсаторов сильфонного типа, которые не дают утечек и не требуют обслуживания. Сильфонные компенсаторы имеют малые габариты, могут устанавливаться в любом месте трубопровода при любом способе его прокладки, не требуют строительства специальных камер и обслуживания в течение всего срока эксплуатации. Срок их службы, как правило, соответствует сроку службы трубопроводов. Применение сильфонных компенсаторов обеспечивает надежную и эффективную защиту трубопроводов от статистических и динамических нагрузок, возникающих при деформациях, вибрации и гидроударе. Благодаря использованию при изготовлении сильфонов высококачественных нержавеющих сталей, сильфонные компенсаторы способны работать в самых жестких условиях с температурами рабочих сред от «абсолютного нуля» до 1000 °С и воспринимать рабочие давления от вакуума до 100 атм., в зависимости от конструкции и условий работы.

Основной частью сильфонного компенсатора является сильфон - упругая гофрированная металлическая оболочка, обладающая способностью растягиваться, изгибаться либо сдвигаться под действием перепада температур, давления и другого рода изменений. Между собой они различаются по таким параметрам как размеры, давление и типы смещений в трубе (осевые, сдвиговые и угловые).

На основании данного критерия компенсаторы выделяют осевые, сдвиговые, угловые (поворотные) и универсальные.

Сильфоны современных компенсаторов состоят из нескольких тонких слоев нержавеющей стали, которые формируются при помощи гидравлической или обычной прессовки. Многослойные компенсаторы нейтрализуют воздействие высокого давления и различного рода вибраций, не вызывая при этом реакционных сил, которые в свою очередь провоцируются деформацией.

Компания «Кронштадт» (Санкт-Петербург), официальный представитель датского производителя Belman Production A/S, поставляет на российский рынок сильфонные компенсаторы, специально разработанные для тепловых сетей. Этот тип компенсаторов широко применяется при строительстве теплосетей в Германии и странах Скандинавии.

Устройство данного компенсатора имеет ряд отличительных особенностей.

Во-первых, все слои сильфона выполнены из высококачественной нержавеющей стали AISI 321 (аналог 08Х18Н10Т) или AISI 316 TI (аналог 10Х17Н13М2Т). В настоящее время, при строительстве тепловых сетей часто используются компенсаторы, в которых внутренние слои сильфона изготавливаются из материала более низкого качества, чем наружные. Это может привести к тому, что при любом, даже незначительном повреждении внешнего слоя, или при небольшом дефекте сварного шва, вода, в которой содержатся хлор, кислород и различные соли, попадет внутрь сильфона и спустя некоторое время он разрушается. Конечно, стоимость сильфона, в котором из качественной стали изготавливаются только внешние слои, несколько ниже. Но эта разница в цене не идет ни в какое сравнение со стоимостью работ в случае аварийной замены вышедшего из строя компенсатора.

Во-вторых, компенсаторы Belman оснащаются как наружным защитным кожухом, защищающим сильфон от механических повреждений, так и внутренним патрубком, который защищает внутренние слои сильфона от воздействия абразивных частиц, содержащихся в теплоносителе. Кроме того, наличие внутренней защиты сильфона препятствует отложению песка на линзы сильфона и снижает сопротивление потоку, что тоже немаловажно при проектировании теплотрассы.

Удобство монтажа - ещё одна отличительная особенность компенсаторов Belman. Этот компенсатор, в отличие от аналогов, поставляется полностью готовым к установке в теплосеть: наличие специального фиксирующего устройства позволяет монтировать компенсатор не прибегая к какой-либо предварительной растяжке и не требует дополнительного нагрева участка теплосети перед установкой. Компенсатор оснащен предохранительным приспособлением, которое защищает сильфон от перекручивания при монтаже и препятствует чрезмерному сжатию сильфона в период эксплуатации.

В тех случаях, когда вода, протекающая по трубопроводу, содержит много хлора или возможно поступление к компенсатору грунтовых вод, компания Belman предлагает сильфон, в котором наружный и внутренний слои изготовлены из специального сплава, особо устойчивого к воздействию агрессивных веществ. Для бесканальной прокладки теплотрасс данные компенсаторы выпускаются в пенополиуретановой изоляции и оснащаются системой оперативного дистанционного контроля.

Все указанные преимущества компенсаторов для тепловых сетей производства компании Belman, вкупе с высоким качеством изготовления, позволяют гарантировать безаварийную работу сильфона в течение не менее 30 лет.

Литература:

  1. Антонов П.Н. «Об особенностях применения компенсаторов», журнал «Трубопроводная арматура», № 1, 2007.
  2. Поляков В. «Локализация деформации труб посредством сильфонных компенсаторов», «Промышленные Ведомости» №№ 5-6, май-июнь 2007
  3. Логунов В.В., Поляков В.Л., Слепченок В.С. «Опыт применения осевых сильфонных компенсаторов в тепловых сетях», журнал «Новости теплоснабжения», № 7, 2007.

Устройство содержит изогнутой формы корпус из отводов и прямых участков, выполненный из эластичного материала, преимущественно из резинотканевого рукава (шланга), а на концах корпуса установлены патрубки или патрубки с фланцами для соединения с трубопроводами тепловой сети, а материал эластичного корпуса армирован металлической сеткой.

Изобретение относится к системам централизованного теплоснабжения населенных мест, промышленных предприятий и котельных.

В централизованных системах теплоснабжения один источник теплоты (котельная) подает теплоту нескольким потребителям, расположенным на некотором расстоянии от источника теплоты, а передача теплоты от источника до потребителей осуществляется по специальным теплопроводам - тепловым сетям.

Тепловая сеть состоит из соединенных между собой сваркой стальных трубопроводов, тепловой изоляции, устройств для компенсации температурных удлинений, запорной и регулирующей арматуры, подвижных и неподвижных опор и др. , с.253 или , с.17.

При движении теплоносителя (вода, пар и др.) по трубопроводам последние нагреваются и удлиняются. Например, при повышении температуры на 100 градусов удлинение стальных трубопроводов составляет 1,2 мм на один метр длины.

Компенсаторы используются для восприятия деформаций трубопроводов при изменении температуры теплоносителя и для разгрузки их от возникающих температурных напряжений, а также для предохранения от разрушения арматуры, установленной на трубопроводах.

Трубопроводы тепловых сетей устраивают таким образом, чтобы они могли свободно удлиняться при нагревании и укорачиваться при охлаждении без перенапряжения материала и соединений трубопровода.

Известны устройства для компенсации температурных удлинений , которые выполнены из тех же труб, что и стояки горячего водоснабжения. Указанные компенсаторы выполнены из труб, изогнутых в виде полуволн. Такие устройства имеют ограниченное применение, так как компенсирующая способность полуволн небольшая, во много раз меньше, чем у П-образных компенсаторов. Поэтому такие устройства не применяются в системах теплоснабжения.

Известны наиболее близкие по совокупности признаков устройства для компенсации температурных удлинений тепловых сетей с 189, или стр.34. Известные компенсаторы можно разделить на две группы : гибкие радиальные (П-образные) и осевые (сальниковые). Чаще применяют П-образные компенсаторы, так как они не нуждаются в обслуживании, но требуется их растяжка. К недостаткам П-образных компенсаторов можно отнести: повышенное гидравлическое сопротивление участков тепловых сетей, увеличение расхода трубопроводов, необходимость устройства ниш, а это приводит к увеличению капитальных затрат. Сальниковые компенсаторы требуют постоянного обслуживания, поэтому их можно устанавливать только в тепловых камерах, а это приводит к удорожанию строительства. Для компенсации температурных удлинений используют и повороты тепловых сетей (Г- и Z - образная компенсация, рис.10.10 и 10.11, с 183 ).

Недостатками таких компенсирующих устройств являются усложнение монтажа при наличии П-образных компенсаторов и усложнение эксплуатации при использовании сальниковых компенсаторов, а также небольшой срок службы стальных трубопроводов из-за коррозии последних. Кроме того, при температурных удлинениях трубопроводов возникают силы упругой деформации, изгибающие моменты гибких компенсаторов, в том числе поворотов тепловых сетей. Вот почему при устройстве тепловых сетей используют стальные, как наиболее прочные трубопроводы и требуется проводить расчет на прочность , с.169. Заметим, что стальные трубопроводы тепловых сетей подвержены интенсивной коррозии, как внутренней, так и наружной. Поэтому срок службы тепловых сетей, как правило, не превышает 6-8 лет.

П-образные компенсаторы состоят из 4-х отводов и трех прямых участков стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «П».

Самокомпенсация трубопроводов осуществляется по Z-образной схеме и Г-образной схеме , рис.10.10. и рис.10.11, с.183.

Z-образная схема включает два отвода и три прямых участка стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «Z».

Г-образная схема включает один отвод и два прямых участка стальных трубопроводов, соединенных сваркой. В результате соединения указанных элементов образуется изогнутой формы корпус в виде буквы «Г».

Задачей изобретения является увеличение срока службы подающих и обратных трубопроводов тепловых сетей, упрощение монтажа тепловых сетей и создание условий, при которых будут отсутствовать причины, которые приводят к возникновению напряжений в трубопроводах от температурных удлинений трубопроводов.

Поставленная цель достигается тем, что устройство для компенсации температурных удлинений трубопроводов тепловой сети содержащее изогнутой формы корпус, состоящее из отводов и прямых участков трубопровода, отличается от прототипа тем, что изогнутой формы корпус из отводов и прямых участков выполнен из эластичного материала, преимущественно из резинотканевого рукава (или шланга, выполненного, например, из резины), а на концах корпуса установлены патрубки или патрубки с фланцами для соединения с трубопроводами тепловой сети. При этом эластичный материал, из которого выполнен изогнутой формы корпус (шланг) может быть армирован преимущественно металлической сеткой.

Использование предлагаемого устройства приводит к уменьшению расхода трубопроводов, уменьшению размеров ниш для установки компенсаторов, не требуется проводить растяжку компенсаторов, то есть в итоге уменьшаются капитальные затраты. Кроме того, в подающем и обратном трубопроводах тепловых сетей не будут возникать напряжения от температурных удлинений; следовательно, для устройства тепловых сетей могут использоваться трубопроводы, выполненные из менее прочного материала, чем сталь, в том числе могут использоваться трубы, стойкие против коррозии (чугун, стекло, пластик, асбестоцемент и др.), а это приводит к снижению капитальных и эксплуатационных затрат. Выполнение подающих и обратных трубопроводов из материала, стойкого против коррозии (чугун, стекло и др.) повышает долговечность тепловых сетей в 5-10 раз, а это приводит к уменьшению эксплуатационных затрат; действительно, если срок службы трубопроводов увеличивается, значит, заменять трубопроводы тепловых сетей приходится реже, а это значит, что реже придется отрывать траншею, снимать плиты перекрытия каналов для прокладки тепловых сетей, демонтировать трубопроводы, которые отслужили свой срок эксплуатации, укладывать новые трубопроводы, покрывать их новой тепловой изоляцией, укладывать плиты перекрытия на место, засыпать траншею грунтом и выполнять другие работы.

Устройство поворотов тепловых сетей для осуществления «Г» и «Z»-образной компенсации трубопроводов приводит к уменьшению затрат металла и упрощению компенсации температурных удлинений. При этом резинотканевый рукав, используемый для компенсации температурных удлинений, может быть выполнен из резины или шланга; при этом шланг может быть армирован (для прочности) например, стальной проволокой.

В технике широко применяются резинотканевые рукава (шланги). Например, гибкие трубы (виброизолирующие вставки) применяются для предотвращения передачи вибрации от циркуляционного насоса на систему отопления с.107, рис.V9. При помощи шлангов осуществляется присоединение умывальников и моек к трубопроводам горячего и холодного водоснабжения. Однако, в этом случае резинотканевые рукава (шланги) проявляют новые свойства, так как выполняют роль компенсирующих устройств, то есть компенсаторов.

На фиг.1 представлено устройство для компенсации температурных удлинений трубопроводов тепловых сетей, а на фиг.2 разрез 1-1 фиг.1

Устройство состоит из трубопровода 1 длиной L, выполненного из эластичного материала; таким трубопроводом может служить резиновый рукав, гибкая труба, шланг, шланг армированный металлической сеткой, трубопровод, выполненный из резины и т.п. В каждый конец 2 и 3 трубопровода 1 вставлен патрубок 4 и 5, к которым жестко, например, с помощью сварки, присоединены фланцы 6 и 7, в которых имеются отверстия 8 и 9, диаметром равные внутреннему диаметру патрубков 4 и 5. Для обеспечения прочности и герметичности соединения трубопровода 1 и патрубков 4 и 5 установлены хомуты 10 и 11. Каждый хомут стягивается болтом 12 и гайкой 13. Во фланцах 6 и 7 имеются отверстия 14 для болтов 31, фиг.5 которыми фланцы 6 и 7 соединяется с контрфланцами 19 и 20, прикрепленными к трубопроводам 15 и 16 тепловой сети (см. фиг.5 и 6). Контрфланцы на фиг.1 и 2 не показаны. Для обеспечения прочности и герметичности соединения трубопровода 1 и патрубков 4 и 5 вместо хомутов 10 и 11 можно использовать и другое соединение, например, с помощью обжима.

В данном устройстве патрубки 4 и 5 и фланцы 6 и 7 могут быть изготовлены из стали и соединены при помощи, например, сварки. Однако, более целесообразно патрубки 4 и 5 и фланцы 6 и 7 выполнять как единое, неразъемное изделие, например, методом литья или методом литья под давлением из материала, стойкого против коррозии, например, из чугуна. В этом случае долговечность предложенного устройства будет значительно больше.

На фиг.3 и 4 показан другой вариант предложенного устройства. Отличие состоит в том, что к патрубкам 4 и 5 фланцы 6 и 7 не присоединяется, а соединение патрубков 4 и 5 с трубопроводами тепловой сети осуществляется с помощью сварки, то есть предусматривается неразъемное соединение. При наличии фланцев 6 и 7 (см. фиг.1) соединение предлагаемого устройства с трубопроводом тепловой сети осуществляется с помощью разъемного соединения, более удобного при монтаже трубопроводов.

Перед установкой на место устройству для компенсации температурных удлинений трубопроводов тепловых сетей придают форму изогнутого корпуса. Для примера на фиг.5 показана П-образная форма корпуса. Такую форму придают предложенному устройству путем изгиба трубопровода 1, см. фиг.1. Когда необходимо осуществить компенсацию температурных удлинений за счет поворотов, то предложенному устройству придают Г-образную или Z-образную форму. Заметим, что Z-образная форма состоит из двух Г-образных форм.

На фиг.5 показан участок трубопровода 15 длиной L 1 и участок трубопровода 16 длиной L 3 ; указанные участки расположены между неподвижными опорами 17 и 18. Между трубопроводами 15 и 16 расположено предлагаемое устройство для компенсации температурных удлинений длиной L 2 . Расположение всех элементов на фиг.5 показано при отсутствии теплоносителя в трубопроводах 15 и 16 и в предлагаемом устройстве.

К трубопроводу 15 (см. фиг.5) жестко (при помощи сварки) присоединен контрфланец 19, а к трубопроводу 16 аналогичным образом присоединен контрфланец 20.

После установки на место предложенного устройства оно при помощи болтов 32 и гаек, фланцев 6 и 7 и контрфланцев 19 и 20 присоединяется к трубопроводам 15 и 16; между фланцами устанавливают прокладки. На фиг.5 хомуты 10 и 11 и болты 12 условно не показаны.

На фиг.5 показано предлагаемое устройство для компенсации температурных удлинений путем придания трубопроводу 1 (см. фиг.1) П-образной формы, то есть в данном случае предложенное устройство - изогнутой формы корпус - состоит из 4-х отводов и 3-х прямых участков.

Устройство работает следующим образом. Когда в предлагаемое устройство и трубопроводы 15 и 16 подается теплоноситель, например, горячая вода, то трубопроводы 15 и 16 нагреваются и удлиняются (см. фиг.6). Трубопровод 15 удлиняется на величину L 1 ; длина трубопровода 15 будет равна . При удлинении трубопровода 15 он перемещается вправо, и одновременно вправо перемещаются фланцы 19, патрубок 4 и часть трубопровода 1, которые соединены друг с другом (хомуты 10 и 11 на фиг.5 и 6 условно не показаны). В то же самое время трубопровод 16 удлиняется на величину L 3 , длина трубопровода 16 будет равна . При этом фланцы 7 и 20, патрубок 5 и часть трубопровода 1, соединенная с патрубком 5 переместится влево на величину L 3 Расстояние между фланцами 6 и 7 уменьшилось и стало равным . При этом трубопровод 1, соединяющий патрубки 4 и 5 (и трубопроводы 15 и 16) изгибается и за счет этого не препятствует перемещению трубопроводов 15 и 16, следовательно, в трубопроводах 15 и 16 не возникает напряжения от удлинения трубопроводов.

Очевидно, что длина трубопровода 1 должна быть больше расстояния L 2 между фланцами 6 и 7, чтобы иметь возможность изгибаться. При этом никаких напряжений в трубопроводах 1, 15 и 16 от температурных удлинений трубопроводов 15, 16 и 1 не возникает.

Предлагаемое устройство для компенсации температурных удлинений целесообразно устанавливать на середине прямых участков между неподвижными опорами.

Предлагаемое устройство, показанное на фиг.3 и 4, работает аналогичным образом; отличие состоит только в том, что в устройстве отсутствуют фланцы 6 и 7 (фиг.5), а соединение обеих патрубков 4 и 5 с трубопроводами 15 и 16 осуществляется с помощью сварки, то есть в этом случае применяют неразъемное соединение (показано на фиг.7).

На фиг.7 показан Г-образный участок трубопровода, расположенный между неподвижными опорами 21 и 22. Длина прямого участка трубопровода 23 равна L 4 , а трубопровода 24 равна L 5 . Трубопровод 1 (см. фиг.1), изогнут по радиусу R. Представленное устройство несколько отличается от устройства, представленного на фиг.1, а именно: на фиг.7 отсутствуют патрубки 4 и 5 с фланцами 6 и 7. Функцию патрубка выполняют трубопроводы 23 и 24, то есть трубы вставлены в концы 2 и 3 трубопровода 1 (фиг.1), хомуты 10 и 11 обеспечивают прочность и плотность соединения трубопроводов 1 с трубопроводами 23 и 24. Такое конструктивное выполнение несколько упрощает изготовление предложенного устройства, но усложняет монтаж тепловых сетей, поэтому имеет ограниченное применение. Расположение всех элементов, изображенных на фиг.7, показано при отсутствии теплоносителя в трубопроводах 23, 24 и 1.

Когда в трубопроводы 1, 23 и 24 подается теплоноситель, то трубопроводы 23 и 24 нагреваются и удлиняются (см. фиг.8). Трубопровод 23 удлиняется на величину L 4 , а трубопровод 24 удлиняется на величину L 5 . При этом торец 25 трубопровода 23 перемещается вверх, а торец 26 трубопровода 24 перемещается влево (см. фиг.8). При этом трубопровод 1, (выполнен из эластичного материала), соединяющий торцы 25 и 26 трубопроводов 23 и 24, за счет своего изгиба не препятствует перемещению трубопровода 23 вверх, а трубопровода 24 влево. При этом никаких напряжений от температурных удлинений в трубопроводах 1, 23 и 24 не возникает.

На фиг.9 показан вариант предложенного устройства, когда оно используется для Z-образной компенсации температурных удлинений. Z-образный участок трубопровода расположен между неподвижными опорами 26 и 27. длина трубопровода 28 равна L 6 , а трубопровода 29 - L 8 ; длина устройства для компенсации температурных удлинений равна L 7 Трубопровод 1 изогнут в форме буквы Z. В каждый конец 2 и 3 трубопровода 1 вставлены патрубки 4 и 5 с фланцами 6 и 7. Трубопровод 28, патрубок 4, фланцы 6 и 30 прочно и герметично соединены, например, при помощи болтов и хомутов (см. фиг.1). Аналогично соединены трубопровод 29, патрубок 5, фланцы 7 и 31. Расположение всех элементов на фиг.9 показано при отсутствии теплоносителя в трубопроводах (фиг.9). Принцип работы предложенного устройства аналогичен ранее рассмотренному устройству, см. фиг.1-8.

Когда в трубопроводы 28, 1 и 29 подается теплоноситель (см. фиг.10), трубопроводы 28, 1 и 29 нагреваются и удлиняются. Трубопровод 28 удлиняется вправо на величину L 6 ; одновременно вправо перемещаются фланцы 6 и 30, патрубок 4 и торец 2 трубопровода 1 (то есть перемещается часть трубопровода 1, присоединенная к патрубку 4, так как эти элементы соединены друг с другом и трубопроводом 28. Аналогично, трубопровод 29 удлиняется влево на величину L 8 ; одновременно влево перемещаются фланцы 7 и 31, патрубок 5 и торец 3 трубопровода 1 (то есть перемещается часть трубопровода 1, присоединенная к патрубку 5, так как эти элементы соединены друг с другом и трубопроводом 29. При этом трубопровод 1 за счет своего изгиба не препятствует перемещению трубопроводов 28 и 29. При этом никаких напряжений от температурных удлинений в трубопроводах 28, 29 и 1 не возникает.

Во всех рассматриваемых вариантах конструктивного выполнения предложенного устройства длина трубопровода L (см. фиг.1) зависит от диаметра трубопроводов тепловой сети, материала, из которого выполнен трубопровод 1 и других факторов и определяется расчетом.

Трубопровод 1 (см. фиг.1) может быть выполнен из гофрированного резинотканевого рукава (шланга), однако гофры увеличивают гидравлическое сопротивление тепловой сети, засоряются твердыми частицами, которые могут присутствовать в теплоносителе, а при наличии твердых частиц компенсирующая способность такого рукава уменьшается, поэтому такой рукав имеет ограниченное применение; применяется, когда в теплоносителе отсутствуют твердые частицы.

На основании вышеизложенного можно заключить, что предложенное устройство долговечно, проще в монтаже и более экономично по сравнению с известным устройством.

Источники информации

1. Инженерные сети. Оборудование зданий и сооружений: Учебник/ Е.Н.Бухаркин и др.; Под ред. Ю.П.Соснина. - М.: Высшая школа 2001. - 415 с.

2. Справочник проектировщика. Проектирование тепловых сетей. Под ред. Инж. А.А.Николаева. М.: Стройиздат, 1965. - 360 с.

3. Описание изобретения к патенту RU 2147104 CL F24D 17/00.

Компенсационные устройства в тепловых сетях служат для устранения (или значительного уменьшения) усилий, возникающих при тепловых удлинениях труб. В результате снижаются напряжения в стенках труб и силы, действующие на оборудование и опорные конструкции.

Удлинение труб в результате теплового расширения металла оп ределяют по формуле,.

где — коэффициент линейного расширения, 1/°С; l — длина трубы, м; t — рабочая температура стенки, 0 С; t м — температура монтажа, 0 С.

Для трубопроводов тепловой сети значение t принимают равным рабочей (максимальной) температуре теплоносителя; t м — расчетной для отопления температуре наружного воздуха. При средней величине = 12 · 10 -6 1/°С для углеродистой стали удлинение 1 м трубы на. каждые 100°С изменения температур составит l = 1,2 мм/м.

Для компенсации удлинения труб применяют специальные устройства — компенсаторы, а также используют гибкость труб на поворотах трассы тепловых сетей (естественную компенсацию).

По принципу работы компенсаторы подразделяют на осевые и радиальные. Осевые компенсаторы устанавливают на прямолинейных участках теплопровода, так как они предназначены для компенсации усилий, возникающих только в результате осевых удлинений. Радиальные компенсаторы устанавливают на теплосети любой конфигурации, так как они компенсируют как осевые, так и радиальные усилия. Естественная компенсация не требует установки специальных устройств, поэтому ее необходимо использовать в первую очередь.


В тепловых сетях находят применение осевые компенсаторы двух типов: сальниковые и линзовые. В сальниковых компенсаторах (рис. 6.11) температурные деформации труб приводят к перемещению стакана 1 внутри корпуса 5, между которыми для герметизации помещается сальниковая набивка 3. Зажимается набивка между упорным кольцом 4 и грундбуксой 2 при помощи болтов 6.

Рис. 6.11. Сальниковые компенсаторы

а — односторонний; б — двусторонний: 1 — стакан; 2 — грундбукса; 3 — сальниковая набивка; 4 — упорное кольцо; 5 — корпус; 6 — затяжные болты

В качестве сальниковой набивки применяют асбестовый прографиченный шнур или термостойкую резину. В процессе работы набивка изнашивается и теряет упругость, поэтому требуются периодическая ее подтяжка (зажатие) и замена. Для возможности проведения указанных ремонтов сальниковые компенсаторы размещают в камерах.

Соединение компенсаторов с трубопроводами осуществляется сваркой. При монтаже необходимо оставлять зазор между буртом стакана и упорным кольцом корпуса, исключающий возможность возникновения растягивающих усилий в трубопроводах в случае понижения температуры ниже температуры монтажа, а также тщательно выверять осевую линию во избежание перекосов и заедания стакана в корпусе.


Основными достоинствами сальниковых компенсаторов являются малые габариты (компактность) и низкие гидравлические сопротивления, вследствие чего они нашли широкое применение в тепловых сетях, Особенно при подземной прокладке. В этом случае их устанавливают при d y = 100 мм и более, при надземной прокладке — при d y = 300 мм и более.

В линзовых компенсаторах (рис. 6.12). при температурных удлинениях труб происходит сжатие специальных упругих линз (волн). При этом обеспечивается полная герметичность в системе и не требуется обслуживания компенсаторов.

Изготовляют линзы из листовой стали или штампованных полулинз с толщиной стенки от 2,5 до 4 мм газовой сваркой. Для уменьшения гидравлических сопротивлений внутри компенсатора вдоль волн вставляется гладкая труба (рубашка).

Линзовые компенсаторы имеют относительно небольшую компен сирующую способность и большую осевую реакцию. В связи с этим для компенсации температурных деформаций трубопроводов тепло вых сетей устанавливают большое число волн или производят пред варительную их растяжку. Применяют их обычно до давлений при мерно 0,5 МПа, так как при больших давлениях возможно вспучи вание волн, а повышение жесткости волн путем увеличения толщины стенок приводит к снижению их компенсирующей способности и возрастанию осевой реакции.

Естественная компенсация температурных деформаций происходит в результате изгиба трубопроводов. Гнутые участки (повороты) повышают гибкость трубопровода и увеличивают его компенсирующую способность.

При естественной компенсации на поворотах трассы температурные деформации трубопроводов приводят к поперечным смещениям участков (рис. 6.13). Величина смещения зависит от расположения неподвижных опор: чем больше длина участка, тем больше его удлинение. Это требует увеличения ширины каналов и затрудняет работу подвижных опор, а также не дает возможности применять современную бесканальную прокладку на поворотах трассы. Максимальные напряжения изгиба возникают у неподвижной опоры короткого участка, так как он смещается на большую величину.

К радиальным компенсаторам, применяемым в тепловых сетях, относятся гибкие и волнистые шарнирного типа. В гибких компенсаторах температурные деформации трубопроводов устраняются при помош.и изгибов и кручения специально согнутых или сваренных участков труб различной конфигурации: П- и S-образных, лирообразных, омегообразных и др. Наибольшее распространение на практике вследствие простоты изготовления получили П-образные компенсаторы (рис. 6.14,а).

Их компенсирующая способность определяется суммой деформаций -по оси каждого из участков трубопроводов . При этом максимальные изгибающие напряжения возникают в наиболее удаленном от оси трубопровода отрезке — спинке компенсатора. Последняя, изгибаясь, смещается на величину у, на которую необходимо увеличивать и габариты компенсаторной ниши.

Для увеличения компенсирующей способности компенсатора или уменьшения величины смещения его устанавливают с предварительной (монтажной) растяжкой (рис. 6.14,б). При этом спинка компенсатора в нерабочем состоянии изогнута внутрь и испытывает изгибающие напряжения. При удлинении труб компенсатор приходит сначала в ненапряженное состояние, а затем уже спинка изгибается наружу и в ней возникают изгибающие напряжения обратного знака.

Если в крайних положениях,т. е. при предварительной растяжке и в рабочем состоянии достигаются предельно допустимые напряжения, то компенсирующая способность компенсатора увеличивается вдвое по сравнению с компенсатором без предварительной растяжки. В случае же компенсации одинаковых температурных деформаций в компенсаторе с предварительной растяжкой не будет происходить смещение спинки наружу и, следовательно, уменьшатся габариты компенсаторной ниши. Работа гибких компенсаторов других конфигураций - происходит примерно таким же образом.

Расчет естественной компенсации и гибких компенсаторов заключается в определении усилии и максимальных напряжений, возникающих в опасных сечениях, в выборе длин участков трубопроводов, закрепленных в неподвижных опорах, и геометрических размеров компенсаторов, а также в нахождении величины смещений при компенсации температурных деформаций.

Методика расчета основывается на законах теории упругости, связывающих деформации с напряжениями и геометрическими размерами труб, углов изгиба и компенсаторов. При этом напряжения в опасном сечении определяются с учетом суммарного действия усилий от температурных деформаций трубопроводов, внутреннего давления теплоносителя, весовой нагрузки и др. Суммарные напряжения не должны превышать допустимой величины.

На практике расчет максимальных изгибающих напряжений в гнутых компенсаторах и участках естественной компенсации производят по специальным номограммам и графикам. В качестве примера на рис. 6.15 приведена номограмма для расчета П-образного компенсатора.

Расчет П-образного компенсатора по номограмме производят в зависимости от величины температурного удлинения трубопровода t и принятого соотношения между длиной спинки компенсатора В и его вылетом Н (показано стрелками).

Номограммы строятся для различных стандартных диаметров трубопроводов d y , способа изготовления и радиусов углов изгиба. При этом указываются также принятые значения допустимых изгибающих напряжений , коэффициента линейного расширения и установочные условия.

Волнистые компенсаторы шарнирного типа (рис. 6.16) представляют собой линзовые компенсаторы, стянутые стяжками с шарнирным устройством 1 с помощью опорных колец 2, надаренных на трубы. При установке их на трассе, имеющей ломаную линию, они обеспечивают компенсацию значительных тепловых удлинений, работая на изгиб вокруг своих шарниров. Изготовляются такие компенсаторы для труб с d y = 150-400 мм на давление Р у 1,6 и 2,5 МПа и температуру до 450 °С. Компенсирующая способность шарнирных компенсаторов зависит от максимально допустимого угла поворота компенсаторов и схемы их установки на трассе.

Рис. 6.16. Простейшая конструкция компенсатора шарнирного типа; 1 - шарниры; 2 — опорное кольцо

Рис. 6.15. Номограмма для расчета П-образного компенсатора трубопровода flfy = 70 см.

Тепловые удлинения трубопроводов при температуре теплоносителя от 50 °С и выше должны восприниматься специальными компенсирующими устройствами, предохраняющими трубопровод от возникновения недопустимых деформаций и напряжений. Выбор способа компенсации зависит от параметров теплоносителя, способа прокладки тепловых сетей и других местных условий.

Компенсация тепловых удлинений трубопроводов за счет использования поворотов трассы (самокомпенсация) может применяться при всех способах прокладки тепловых сетей независимо от диаметров трубопроводов и параметров теплоносителя при величине угла до 120°. При величине угла более 120°, а также в том случае, когда по расчету на прочность поворот трубопроводов не может быть использован для самокомпенсации, трубопроводы в точке поворота крепят неподвижными опорами.

Для обеспечения правильной работы компенсаторов и самокомпенсаций трубопроводы делят неподвижными опорами на участки, не зависящие один от другого в отношении теплового удлинения. На каждом участке трубопровода, ограниченном двумя смежными неподвижными опорами, предусматривается установка компенсатора или самокомпенсация.

При расчете труб на компенсацию тепловых удлинений приняты следующие допущения:

    неподвижные опоры считаются абсолютно жесткими;

    сопротивление сил трения подвижных опор при тепловом удлинении трубопровода не учитывается.

Естественная компенсация, или самокомпенсация, наиболее надежна в эксплуатации, поэтому находит широкое применение на практике. Естественная компенсация температурных удлинений достигается на поворотах и изгибах трассы за счет гибкости самих труб. Преимуществами ее над другими видами компенсации являются: простота устройства, надежность, отсутствие необхо димости в надзоре и уходе, разгруженность неподвижных опор от усилий внутреннего давления. Для устройства естественной компенсации не требуется дополнительного расхода труб и специальных строительных конструкций. Недостатком естественной компенсации является поперечное перемещение деформируемых участков трубопровода.

Определим полные тепловые удлинения участка трубопровода

Для безаварийной работы тепловых сетей необходимо, чтобы компенсирующие устройства были рассчитаны на максимальные удлинения трубопроводов. Поэтому при расчете удлинений температуру теплоносителя принимают максимальной, а температуру окружающей среды - минимальной. Полное тепловое удлинение участка трубопровода

l = αLt, мм, Стр.28 (34)

где α – коэффициент линейного расширения стали, мм/(м-град);

L – расстояние между неподвижными опорами, м;

t – расчетный перепад температур, принимаемый как разность между рабочей температурой теплоносителя и расчетной температурой наружного воздуха для проектирования отопления.

l = 1,23*10 -2 *20*149 = 36,65 мм.

l = 1,23* 10 -2 * 16* 149 = 29,32 мм.

l = 1,23*10 -2 *25*149 = 45,81 мм.

Аналогично находим l для других участков.

Силы упругой деформации, возникающие в трубопроводе при компенсации теплового удлинения, определяются по формулам:

Кгс; , Н; Стр.28 (35)

где Е – модуль упругости трубной стали, кгс/см 2 ;

I - момент инерции поперечного сечения стенки трубы, см;

l – длина меньшего и большего участка трубопровода, м;

t – расчетная разность температур, °С;

А, В - вспомогательные безразмерные коэффициенты.

Для упрощения определения силы упругой деформации (Р х, P v) в таблице 8 дана вспомогательная величина для различных диаметров трубопроводов.

Таблица 11

Наружный диаметр трубы d H , мм

Толщина стенки трубы s, мм

В процессе работы тепловой сети появляются напряжения в трубопроводе, которые создают для предприятия неудобства. Для уменьшения напряжений, возникающих при нагреве трубопровода, применяются осевые и радиальные стальные компенсаторы (сальниковые, П- и S-образные и другие). Широкое применение нашли П-образные компенсаторы. Для увеличения компенсирующей способности П-образных компенсаторов и уменьшения изгибающего компенсационного напряжения в рабочем состоянии трубопровода для участков трубопроводов с гибкими компенсаторами производят предварительную растяжку трубопровода в холодном состоянии при монтаже.

Предварительную растяжку производят:

    при температуре теплоносителя до 400 °С включительно на 50 % от полного теплового удлинения компенсируемого участка трубопровода;

    при температуре теплоносителя выше 400 °С на 100 % полного теплового удлинения компенсируемого участка трубопровода.

Расчетное тепловое удлинение трубопровода

Мм Стр.37 (36)

где ε – коэффициент, учитывающий величину предварительной растяжки компенсаторов, возможную неточность расчета и релаксацию компенсационных напряжений;

l – полное тепловое удлинение участка трубопровода, мм.

1 участок х = 119 мм

По приложению при х = 119 мм выбираем вылет компенсатора Н = 3,8 м, тогда плечо компенсатора В = 6 м.

Для нахождения силы упругой деформации проводим горизонталь Н = 3,8 м, ее пересечение с В = 5 (Р к) даст точку, опустив перпендикуляр из которой до цифровых значений Р к, получим результат Р к - 0,98 тс = 98 кгс = 9800 Н.

Рисунок 3 – П-образный компенсатор

7 участок х = 0,5*270 = 135 мм,

Н = 2,5, В = 9,7, Р к – 0,57 тс = 57 кгс = 5700 Н.

Остальные участки просчитываем аналогично.