Хво паровой котельной. Опыт проектирования и эксплуатации комплексов хво котельных на основе современного автоматизированного оборудования

Основной фактор, влияющий на долговечность энергетического оборудования, — это первичная водоподготовка. Она заключается в механической и химической очистке воды, а также в ее умягчении. Соблюдение нормативного состава обеспечивает расчетный срок эксплуатации оборудования.

Межремонтный пробег котельной установки напрямую зависит от физического, а также химического качества воды и пара. Отсутствие контроля за физико-химическим состоянием воды приводит к образованию накипи на рабочих поверхностях котла и коммуникаций.
Результатом некачественной водоподготовки для котельных установок является снижение теплопередачи и пропускной способности парогенеаторных трактов из-за уменьшения рабочих сечений (их загрязнения). Также может наблюдаться явление кислородной и углекислотной коррозии деталей, соприкасающихся с рабочей средой.

При отсутствии водоподготовки, указанные факторы резко снижают КПД котельных установок, уменьшают расчетный срок эксплуатации и могут приводить к аварийным ситуациям. В таком случае остро становится вопрос о рентабельности пара как теплоносителя.
Основной причиной снижения производительности котельной установки является наличие в воде солей жесткости — это химические соединения магния и кальция. Они образуют на рабочих поверхностях котла слой накипи, который ухудшает теплопроводность материала. В этом случае растет потребление энергоносителя.

Химическая водоочистка (ХВО)

Химическая водоочистка (ХВО) — это совокупность мер докотловой и внутрикотловой водоподгтовки котельной с целью увеличения срока эксплуатации котельного оборудования. Она выполняется в несколько этапов с применением специальных реагентов, обеспечивающих умягчение воды, предотвращение накипи и коррозии.
В котле происходит процесс непрерывного парообразования, при этом увеличивается концентрация солей и других химических примесей, содержащихся в котловой воде. Уменьшение их содержания в питательном потоке и снижение их влияния на рабочие поверхности котельной установки — это ключевые задачи химводоподготовки.

Посторонние примеси в воде

Все посторонние примеси, в воде, условно подразделяются на три основные группы:
● нерастворимые механические;
● растворенные осадкообразующие;
● коррозионноактивные.
Каждая из них является потенциальной причиной возникновения неполадок и отказов энергетического оборудования. Системы без предварительной механической очистки подвержены серьезным технических проблемам, которые могут повлиять на стабильную работу насосов, трубопроводов и запорной арматуры.

Нерастворимые механические примеси
К нерастворимым механическим примесям относят глину и песок, которые обязательно входят в состав воды; продукты коррозии рабочих поверхностей, возникающие при химическом взаимодействии материала деталей, соприкасающихся с растворимыми примесями рабочей среды.

Растворимые осадкообразующие примеси
Растворенные осадкообразующие примеси могут привести к снижению энергоэффективности паровой котельной, а также к вспениванию воды и паровому уносу загрязнителей. Впоследствии выйти из строя может не только энергетическая установка, но и элементы теплосети.
Осадочное образование карбонатов (накипь) связано с наличием в воде солей жесткости. Также, при достижении температурного предела в 130 °С и выше, снижается растворимость сульфата кальция и происходит образование плотной гипсовой накипи на рабочих стенках.

Коррозионноактивные примеси
К коррозионноактивным примесям воды относят кислород, двуокись углерода и хлориды. Они вызывают утонение материала узлов установки с необустроенной водоподготовкой котельной. Вторичным продуктом коррозионного воздействия являются осадочные примеси, которые также приводят к порче оборудования.

Типы коррозионных процессов

Основными типами коррозионных процессов котельного оборудования являются:
● химический;
● электрохимический.

Химическая коррозия в котловой аппаратуре, обычно, вызывается наличием газовых примесей в воде и растворенных хлоридов. При повышении температуры воды резко снижается растворимость газов и увеличивается их десорбция, что усиливает явление коррозии.
Кроме того, при нагреве воды происходит разложение гидрокарбонатов на двуокись углерода и карбонаты, которые уносятся вместе с паром. Таким образом, снижается уровень pH и повышается коррозионная активность конденсата. А наличие хлоридов в воде ведет к разрушению пассивирующей пленки на металле и вторичной коррозии.
Явление электрохимической коррозии возникает при неполной очистке воды от соединений марганца и железа. Оно происходит в присутствии углекислого газа и кислорода. Наиболее сильно электрохимической коррозии подвержены некачественные сварные соединения и развальцованные концы труб.

Внутрикотловая обработка воды

Основные задачи внутрикотловой водоподготовки:
● защита от коррозии;
● предотвращение накипеобразования при сбое химводоподготовки;
● коррекция уровня pH.

Современные реагенты обладают комплексным действием и позволяют облегчить задачу внутрикотловой водоподготовки.


Качественная вода для котловых систем

Для получения качественной котловой воды необходимо использовать специально разработанные системы водоподготовки, которые отвечают нормативным требованиям, разработанным надзорными органами. Такие системы способны обеспечить идеальный физико-химический состав рабочего тела котла и его долговечность. "ЭНЕРГИЯ и Ко" оказывает котельной. Специалисты компании осуществляют подбор систем химводоподготовки для новых котельных, а также проводят модернизацию водоочистных установок для уже действующих.

Вода хорошо растворяет различные вещества и входит с ними в соединения, поэтому в природе нет химически чистой воды. Примеси в воде бывают двух видов: механические (песок, глина и т.д.) и химические (соли кальция, магния и др.). В зависимости от содержания в воде химических примесей подразделяют воду на мягкую и жесткую.

Мягкая вода содержит незначительное количество солей кальция и магния, жесткая большее их количество. Для оценки качества воды в технике введено понятие о ее жесткости. Различают жесткость воды временную, постоянную и общую.

Временная жесткость воды (или карбонатная) обусловливается присутствием в ней двууглекислых солей кальция Са(НСОз)г и магния Mg (НСОз)г, которые при температуре св. 70 °С распадаются и выпадают из раствора в осадок в виде шлама. Постоянная жесткость воды (или некарбонатная) обусловливается наличием в воде хлоридов, сульфатов, силикатов и других солей кальция и магния (CaSO 2 , MgSO 3 , CaCl 3 , MgCI2, CaSC 3 и др). Эти соли при нагревании воды не выпадают из растворов в осадок, поэтому такая вода получила название воды постоянной жесткости.

Общая жесткость воды - сумма временной и постоянной жесткости. Единицей измерения жесткости с 1952 г. является миллиграмм-эквивалент на 1 литр воды (мг-экв/л). Малая жесткость (конденсат, дистиллят) измеряется тысячными долями мкг-экв/л-микрограмм-эквивалентом.

Ранее единицей жесткости являлся градус жесткости, соответствующий содержанию в 1 л воды 10 мг оксида кальции (извести). Единица (мг- экв/л) больше градуса жесткости в 2,8 раза.
В соответствии с ГОСТ 6055 86 единицей жесткости будет являться моль на кубический метр (моль/м 3).

Числовое значение жесткости, выраженное в молях на кубический метр (моль/м3), будет равно числовому значению жесткости, выраженному в миллиграмм-эквивалент на кг или литр (мг-экв/кг или мг-экв/л). Один моль на кубический метр соответствует массовой концентрации эквивалентов ионов кальция (1/2 Са 2 -Г) 20,04 г/м 3 и ионов магния 1/2 Mg) 12,153 г/м 3 .

В системах теплоснабжения от отопительных котельных с чугунными или стальными котлами неизбежно происходит утечка воды, которую следует пополнять подпиточной водой, предварительно прошедшей обработку в установках химической водоочистки (ХВО), состоящих из осветлительных и коагуляционных аппаратов и водоумягчительных фильтров. Осветлительные аппараты предназначены для удаления из воды взвесей. Соли кальция и магния, вызывающие образование накипи, локализуются в водоумягчительных фильтрах.

Обычно отопительные котельные снабжаются водой из водопровода, которую не требуется очищать. Вода лишь умягчается и дегазируется. Водопроводная вода содержит растворенные соли и газы, при нагревании соли выпадают в осадок на внутренние стенки котлов в виде накипи. Накинь на стенках котлов понижает коэффициент теплопередачи и, следовательно ведет к перерасходу топлива. В топочной части накипь может вызвать перегрев стенки и аварию котла. Раствореииые в воде газы-кислород и углекислота-вызывают коррозию металла. Чугунные котлы мало подвержены коррозии, поэтому кислород и углекислота опасны главным образом для стальных котлов и систем горячего водоснабжения.

Чтобы избежать образования накипи в котлах, следует использовать, воду определенной жесткости или подвергать ее умягчению и дегазации. Дегазация воды в отопительных, котельных производится с помощью вакуумдеаэрации.

Нормы питательной и подпиточной воды. Следует отметить, что единых норм качеству питательной и подпиточной воды, для паровых и водогрейных чугунных котлов не существует. Так, ранее: принималось, что дли паровых чугунных котлов общая жесткость питательной воды должна быть не более 300 мкг-экв/л. Содержание растворенного кислорода и других примесей нормируется. В соответствии с "Правилами технической эксплуатации котельный жилищно-коммунального хозяйства, выпущенными МЖКХ РСФСР 1 1973 г.. состав питательной воды для паровых чугунных котлов должен быть не хуже указанного ниже:

  • Значение pH не менее 7
  • Жесткость, мкг-экв/.т не более 20(7)
  • Содержание, мкг/л, не более: кислорода, углекислоты,сульфита натрия.

По установленным ранее нормам для чугунных водогрейных котлов подпиточная вода тепловых сетей при закрытой системе теплоснабжения должна иметь карбонатную жесткость и выше 700 мкг-экв/л. Общая жескость и содержание кислорода в подпиточной воде не нормируется.

Водоподготовка котельных применяемая в отопительных котельных малой мощности - это упрощенная схема одноступенчатого натрий-катионированый с мокрым хранением реагента.

При натрии катионированном плохорастворимые в воде соли переходят в хорошо растворимые, которые даже при большом содержании в воде не выпадают в осадок. При этом общее количество солей не уменьшается. В качестве катионита применяют минерал глауконит, сульфоуголь и синтетические смолы. Когда катионит истощится (о чем свидетельствует повышение жесткости умягченной воды), приступают к регенерации фильтра. Катионит регенерирует обратным протоком 10%-ю раствора поваренной соли NaCl. Регенерация состоит из взрыхления катионита, пропускания через него раствора поваренной соли и отмывки. При регенерации ионы натрия вытесняют из катионита поглощенные им ионы кальция и магния, которые переходят в раствор. Обработанный таким образом катионит обогащается катионами натрия и вновь обретает способность умягчать жесткую воду. Для удаления продуктов регенерации и остатков раствора поваренной соли катионит отмывают.

Простейшая схема Na-катнонитовой установки показана на рис. 54. Умягчаемая вода поступает в катнонитовый фильтр где соли жесткости вступают в реакцию с катионитом. Для восстановления обменной способности катионит периодически обрабатывают раствором поваренной соли, поступающей в фильтр из солерастворителя.

Способ мокрого хранения реагента (поваренной соли) заключается в том, что соль хранят в бетонных резервуарах. В нижней части которых небольшое ее количество находится в растворенном состоянии (концентрация около 25 %). Этот раствор подают насосом в фильтр соленого раствора, а затем в специальные баки, где разбавляют до концентрации регенеративного раствора -10 % и расходуют по мере надобности.

Водоподготовка котельных использует основное оборудование - катионитовое;

Рис 54, Схема простейшей Na-ка тиомнтомой установка,фильтры, изображенные на рис. 55. Корпус фильтра рассчитан на рабочее давление 392-585 кПа (4-6 атм). В нижней его части расположено дренажное устройство для равномерного распределения проходящей воды по сечению фильтра. Дренажное устройство закреплено в бетонной подушке и состоит из коллектора и системы труб. Вода в трубы входит через штуцера, приваренные к верхней части труб. На штуцера навинчены шестигранные пластмассовые колпачки с несколькими отверстиями на каждой грани. На поверхности бетона с дренажными колпачками расположена кварцевая подстилка с крупностью зерен от 10 до 1 мм. Крупность зерен уменьшается снизу вверх. Кварцевая подстилка предохраняет вынос катионитового материала через дренажную систему. Над подстилкой закладывают катионит, выше располагается водяная подушка. Верхний лаз служит для загрузки кварца и катионита, а нижний люк-для отвода воды во время промывки кварца при первичной загрузке.

Наиболее распространенным катионитом в настоящее время является сульфоуголь, который получают после обработки бурого или каменного угля дымящейся серной кислотой. При работе фильтра открыты задвижки 1 и 4, остальные закрыты. Для регенерации сначала взрыхляют фильтрующий материал, открывая задвижки 3 и 6. Взрыхляют обычно соленой водой из промывочного бака, в котором она скапливается после промывки. Далее в фильтр подают раствор поваренной соли, открывают задвижки 2 и 5. После регенерации фильтр промывают исходной водой для удаления остатка хлоридов Са и Mg и избытка раствора поваренной соли. При этом открывают задвижки1 и 3.

Промывочную соленую воду собирают в промывочный бак дли использовании в процессе взрыхления в следующий период регенерации и для экономии расхода соли. При отсутствии промывочного бака промывочную воду сбрасывают в дренаж, в этом случае открывают задвижки 1 и 5. Трубопроводы малых диаметров служат для отбора проб воды. В фильтрах последних конструкций подвод воды осуществляют через центр верхнего днища, а отвод - через центр нижнего с проходом отводящей трубы через бетонную подушку.

Регенерацию катнонитового фильтра обычно проводят два-три раза в сутки. Все операции обычно занимают до 1,5 ч, поэтому устанавливают резервный фильтр. Кроме резервного фильтра первой ступени для паровых котельных ставят еще барьерные последовательно включенные фильтры второй ступени. Барьерные фильтры обеспечивают глубокое умягчение и постоянную жесткость выдаваемой воды.

Водоподготовка котельных помимо катионитовых фильтров к основному оборудованию относит насосы, фильтры соляного раствора, баки промывочной воды и мокрого хранения поваренной соли, различные мерники и пр.

В соответствии со СНиП П-35-76 котельные установки для чугунных паровых котлов, а также для стальных паровых котлов , допускающих внутрикотловую обработку воды, разрешается применять магнитную обработку воды при жесткости исходной воды -9000 мкг-экв/л и содержании железа -300 мкг/л.

По данным АКХ им. К. Д. Памфилова, магнитная обработка рекомендуется для чугунных н стальных секционных котлов с тепловой нагрузкой поверхности нагрева не более 24,4 тыс. Вт/м; 21 тыс. ккал/(м*ч) при карбонатной жесткости воды не более 9000 ккг-экв/л.

Схема установки противонакипного магнитного устройства с постоянными магнитами ПМУ-1 показана на рис. 56. Принцип действия ПМУ-1 (рис. 57) заключается в следующем: При пропускании подпиточной воды через магнитное поле определённого напряжённости и полярности растворённые в ней соли меняют структуру и не осаждаются на стенках котла,а выпадают в осадок в виде шлама,который удаляется через сепараторный шламоотделитель.

В настоящее время разработаны новые аппараты по магнитной обработке воды в отопительных котелных: АМП-5-аппарат магнитный противонакипный и АФЬМ-40-аппарат ферритобариевый магнитный. Цифры соответствуют производительности аппаратов в м:,/ч.

Для магнитной обработки воды в стальных котлах средней производительности используются также установки с электромагнитами постоянного и переменного тока. Аппараты устанавливают на линии исходной воды, поступающей в питательный бак или дегазатор.

Вакуумная деаэрация. Кислород и углекислота, растворенные в воде, вызывают коррозию стенок котлов. Растворенные газы и воздух из воды удаляют дегазацией. Существуют несколько способов удаления (деаэрации) из воды растворенных газов: термическая деаэрация, вакуум-деаэрация.

В водогрейных отопительных котельных, в которых нет пара, рекомендуется дегазировать воду с помощью вакуум-деаэрации. Принцип работы установки для вакуумной деаэрации заключается в следующем: вода из бака-аккумулятора подпиточным насосом подается к эжектору. Эжектор создает в головке деаэратора необходимый вакуум. После эжектора вода сбрасывается в открытый бак (газоотделитель), где происходит отделение части газов от воды. Для интенсивной дегазации воду в деаэраторе подогревают до 50-60° С.

Деаэрация с помощью сталестружечных и магномассовых фильтров, а также электрохимическим способом не нашла применения.

Водоподготовка котельных включает в себя химическую очистку котлов от накипи. Этот способ является единственно возможным для очистки от накипи чугунных и стальных секционных котлов. Очистку производят раствором соляной кислоты. Реже для этой цели используют фосфорную, хромовую и серную кислоты. Однако, хотя кислотная очистка весьма эффективна, частого ее применения надо всячески избегать из-за возможной коррозии металла. Для химической очистки котлов применяют слабые водные растворы соляной кислоты с концентрацией до 10 % с добавкой ингибитора замедлителя кислотной коррозии. который не препятствует разложению накипи, ко снижает коррозию металла (технический уротропин, за-медлители марки ЛБ-5, ПБ-6, столярный и мездровый клей). Работа должна выполняться квалифицированным персоналом в специальной одежде (брезентовый костюм, обувь, резиновые перчатки и предохранительные очки) со строгим соблюдением инструкций при температуре 15-25° С. Перед очисткой котел отключают от системы отопления, с него снимают арматуру, в трубопроводы устанавливают деревянные заглушки. Процентное содержание соляной кислоты в растворе устанавливают из расчета % кислоты на 1 мм слоя накипи в котле. Если толщина накипи более 10 мм. химическую очистку котла производят в два три приема. Для определения толщины слоя осторожно скалывают два кусочка накипи через верхние и нижние ниппельные отверстия крайних секций, принимая для расчета кусочек с большей толщиной. Для приготовления раствора кислоты пользуются деревянными или металлическими бочками вместимостью 100-500 л. Раствор кислоты подается в котел самотеком снизу котла, поэтому бочки располагают на козлах или, при заглубленной котельной на поверхности земли.

При подаче раствора в котел сразу же начинается разложение накипи с большим выделением углекислого газа и пены, которые отводятся по шлангу в бочку-отстойник. В тесной котельной при отсутствии вентиляции для контроля накопления углекислого газа необходимо поставить на пол зажженную керосиновую лампу или фонарь. При затухании лампы работы должны быть прекращены до тех пор, пока не проветрят помещение.

Процесс очистки занимает 1-1,5 ч и кончается прекращением выделения углекислого газа и лены. В результате реакции раствор кислоты из прозрачно-зеленого быстро делается мутно-коричневым, так как он содержит более 90% накипи, остальная часть накипи находиться в осадке в виде шлама. По окончании прочистки котёл промывают водой с помощью изогнутой трубки. Вставляемой в ниппельные отверстия секций й постепенно передвигаемой внутрь котла для промывки каждой секции. Промывка продолжается до тех пор, пока из котла не станет вытекать чистая вода. После окончания промывки необходимо проверить, как котел очищен от накипи, осветив его через ниппели переносной лампой напряжением не выше 12 В.

После промывки котла водой производится его щелочение, которое полностью нейтрализует остатки кислоты в котле и способствует восстановлению защитной пленки на поверхности металла, разрушенной действием кислоты. Щелочение производится 1 %-м раствором едкого натра. 2 %-м раствором кальцинированной соды или 2 %-м раствором тринатрий-фосфата. После наполнения котла щелочным раствором последний нагревают до температуры кипения, после чего пускают насос и производят щелочение котла (циркуляцией раствора) в течение 3 ч.После остывания раствор щелочи сливают и котел вновь тщательно промывают от шлама. Затем проводят гидравлическое испытание котла для выявления возможных неплотностей ранее скрытых накипью и иногда неправильно приписываемых действию кислоты на металл. После этого составляют акт по установленной форме. Очистку котлов от накипи производят с помощью передвижной установки, смонтированной на одноосном прицепе.

Котельный завод Энергия-СПБ производит различные модели водоподготовки:

Транспортирование водоподготовки и другого котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.

ВОДОПОДГОТОВКА И ВОДОХИМИЧЕСКИЙ РЕЖИМ КОТЕЛЬНОЙ

5.1.Водоподготовка имеет большое значение для безопасной и экономичной работы котельных установок. При неудовлетворительной водоподготовке на поверхности нагрева котлов, тепловых сетей и водоподогревателей откладываются твердые отложения, и происходит коррозия поверхности нагрева.

5.2.Водоподготовка подпиточной воды включает в себя умягчение жесткой воды в натри-катионитовых фильтрах и удаление агрессивных газов, кислорода и свободной углекислоты, в вакуумных деаэраторах.

5.3.Вода из городского водопровода мимо или через повысительные насосы холодной воды поступает на охладитель рабочей жидкости. Затем на подогреватель сырой воды (I ступень ХВО) /12/. Нагревается до температуры не выше 40 С и поступает в натрий-катионитовый фильтр /1/. Повышение воды выше 40 С вызывает коксование сульфоугля, что снижает его обменные способности. Умягченная вода после фильтра /1/ поступает на подогреватель химочищенной воды II ступени /13/, где нагревается до температуры 70-80 С, а затем подается на вакуумные деаэраторы /6,7/. Де аэрированная умягченная вода свободно сливается в баки подпиточной воды /10/. Смотри схему №5.

5.4.Натрий-катионитовый фильтр представляет собой вертикальные цилиндрические напорные баки, работающие с давлением выше атмосферного. Нижняя часть фильтра заполнена слоем бетона, на котором расположено нижнее дренажное устройство.

Дренажное устройство предназначено для равномерного распределения поступающей воды по всей площади фильтра. Оно состоит из коллектора с системой дренажных трубок со щелями, щели которых меньше диаметра наименьших зерен сульфоугля /катионита/.

Выше дренажного устройства располагается катионит /сульфоуголь/ высотой 2,2м.

В верхней части фильтра расположено распределительное устройство для воды и солевого раствора. Оно предназначено для равномерного распределения воды и солевого раствора по всей поверхности сульфоугля.

Фильтр имеет два лаза: верхний – для загрузки катионита и для доступа во внутрь фильтра; и нижний – для ревизии нижней дренажной системы.

Катионитовые фильтры обвязаны трубопроводами с арматурой и измерительными приборами – расходомерами, манометрами, термометрами, устройствами для отбора проб воды.

5.5.К вспомогательному оборудованию водоподготовки относится устройство для подготовки раствора соли, необходимого для регенерации фильтра, устройство ""мокрого хранения"" соли /14/, перекачивающие солевые насосы /15/, бак мерник /3/. бак подсоленной воды /8/, солерастворитель /4/.

5.5.1.Установка ""мокрого хранения"" соли представляет собой четыре железобетонных бака-хранилища, рассчитанных на трех-четырех месячную потребность соли.

Сухая соль автотранспортом засыпается в ямы. В верхней части ям имеется коллектор с отверстиями для равномерного размыва соли холодной/1/ или горячей водой /2/подаваемой из котельной. Смотри схему №5.

На дне ямы ""мокрого хранения"" соли имеется всасывающая труба (в коробе со щебнем – для фильтрации солевого раствора), по которой раствор насосом /5/ подается в бак мерник /3/ котельной.

5.5.2.Всасывающие трубы из ям ""мокрого хранения"" соли входят в рядом стоящую насосную, где расположены два насоса /5/ для перекачки солевого раствора и трубопроводы с запорной арматурой обвязывающие солевые ямы. Обвязка солевых ям позволяет перекачать солевой раствор из любой ямы в любую, а так же подавать горячую и холодную воду в ямы, как через размывочный коллектор, так и через заборную трубу.

5.5.3.Из ямы ""мокрого хранения"" соли солевой раствор перекачивающими насосами подается в бак мерник. В баке мернике насыщенный раствор разбавляется до 7-10% концентрации и подается в регенерируемый фильтр солевым насосом /15/.

5.5.4.Солевой раствор для регенерации фильтра может быть приготовлен и в проточном солерастворителе /4/. Соль ""сухого хранения"" засыпается в солерастворитель и пропускают через него холодную воду. Полученный солевой раствор может быть подан как непосредственно в фильтр, так и на бак мерник. Этот способ приготовления солевого раствора применяется при выходе из строя перекачивающих насосов /5/ или солевого насоса /15/.

5.6.Цикл работы фильтра состоит из операций взрыхления, регенерации, контакта, отмывки, умягчения.

5.6.1.Цель взрыхления – устранить уплотнения слежавшейся массы катионита, для обеспечения более свободного доступа регенерационного раствора к зернам катионита. Взрыхление производится отмывочной водой подаваемый насосом взрыхления /9/ из бака подсоленной воды /8/. В случае отсутствия отмывочной воды, взрыхление производится холодной водой.

При взрыхлении сначала открывается задвижка на линии подвода взрыхляющей воды, а затем задвижку на линии сброса воды в верхней части фильтра в канализацию. Взрыхление должно производится до тех пор, пока вода, отходящая от фильтра вода, не станет прозрачной. При взрыхлении не допускается полное опорожнение промывочного бака, во избежание засоса воздуха в фильтр.

5.6.2.Регенерация катионита в фильтре производится раствором соли, приготовленным в баке мернике. Раствор соли 7-10% концентрации подается солевым насосом в фильтр, он проходит сверху вниз сквозь слой катионита и выходит в канализацию. При помощи дренажной задвижки на фильтре устанавливаем скорость подачи раствора 3-4м3/час. В процессе регенерации необходимо следить, чтобы в фильтре был все время подпор жидкости. После пропуска раствора соли, закрывается дренаж, фильтр ставится на контакт.

5.6.3.Контакт катионита с раствором соли длится 5-10 минут. Он необходим для дополнительного обменного процесса между катионами натрия и солями жесткости. При увеличении времени контакта свыше 15 минут эффект регенерации возрастает незначительно.

5.6.4.После окончания контакта производится отмывка сульфоугля от регенерационного раствора и продуктов регенерации. Для отмывки фильтра холодную воду пропускаем сквозь катионит сверху вниз 25-45 минут. Сбрасываем воду в канализацию. Сброс производится до тех пор, пока отмывочная вода станет соленой на вкус. Тогда фильтр переключается на отмывку в промывочный бак. Отмывка в бак заканчивается тогда, когда отмывочная вода становится прозрачной и ее общая жесткость не превышает 200мкг.экв/кг, а концентрация хлоридов превышает их содержание в исходной воде не более чем на 30мг/л.

Если бак отмывочной воды заполнится раньше, чем отмоется фильтр, отмывка продолжается в канализацию.

Катионитовый фильтр, поставленный после регенерации в резерв, в избежания пептизации катионита отмывается от регенерационного раствора только частично. В этом случае отмывка в бак не ведется, и фильтр оставляется в резерве со слабым регенерационным раствором. Окончание отмывки и отмывка на бак производится непосредственно перед включением фильтра в работу.

5.6.5.Закончив отмывку, фильтр включается в работу. Умягченная вода поступает через задвижку на входе в верхнее распределительное устройство, проходит через фильтр, через катионит и далее через дренажную систему, через задвижку на выходе отводится на подогреватель II ступени ХВО /13/.

При включении фильтра в работу необходимо еще раз произвести химический контроль выходящей воды, которая должна отвечать следующим показателям: жесткость не более 200мкг.экв/л.; хлориды – 30мг/л больше, чем их содержание в исходной воде.

Во время умягчения следует периодически /один-два раза в смену/, открывать воздушный вентиль для выпуска скопившегося в фильтре воздуха.

По достижении остаточной жесткости в умягченной воде 200мкг.экв/л. фильтр отключают и повторяют цикл операций.

5.6.6.Для подготовки питательной воды паровых котлов ДЕ-10-14ГМ применяется двухступенчатое умягчение. При двухступенчатом умягчении: исходную воду вначале умягчают в основных катионитовых фильтрах (фильтры I ступени) /1/ до остаточной жесткости 1000мкг.экв/л., а затем доумягчают в катионитовых фильтрах II ступени /2/ до конечной жесткости 20мкг.экв/л.

5.7.Химически очищенная вода после натрий-катионитовых фильтров I ступени /1/ поступает на подогреватель ХВО II ступени /13/, где нагревается до температуры 70-80 С. На вход подогревателя ХВО II ступени поступает еще и подпиточная вода после подпиточных насосов /11,17/ на повторную деаэрацию. Ее количество регулируется в ручную.

5.7.1.Греюшая вода поступает сразу на подогреватель ХВО II ступени, а затем последовательно на подогреватель I ступени и на регулятор ""Температуры ХВО"". В случае работы без подогревателя ХВО I ступени, теплоноситель после подогревателя II ступени ХВО поступает на регулятор ""Температуры ХВО"" через байпас.

5.7.2.Регулятор ""Температуры ХВО"" регулирует температуру на выходе воды с теплообменника ХВО II ступени. Температуру на выходе воды с подогревателя ХВО I ступени, регулируется в ручную. В случае ее повышения до 38 С в операторской срабатывает звуковая и световая сигнализация.

5.7.3.Греющая и нагреваемая вода на подогревателе ХВО II ступени подключены противотоком, а на подогревателе ХВО I ступени – прямотоком.

5.7.4.Для аварийной подпитки тепловых сетей напрямую, минуя деаэрацию необходимо:

Закрыть задвижку на входе в подогреватель ХВО II ступени

Открыть перемычку между трубопроводами (выход натрий-катионитовых фильтров и нагнетательный коллектор подпиточных насосов /11,17/).

Эта линия подпитывает тепловые сети химически очищенной водой давлением исходной воды, без подпиточных насосов (пуск после остановки со сливом воды, выход из строя подпиточного насоса).

5.8.После подогревателя ХВО II ступени химически очищенная вода поступает на вакуумную деаэрационную установку подпитки. Она включает в себя вакуумные деаэрационные колонки производительностью 25 т/час /7/, 50 т/час/6, охладитель выпара колонки /16/, бак деаэрированной воды /10/, эжектора – общие с колонками ГВС. Смотри схему №15. Одна из деаэраторных колонок подпитки находится в работе, а другая в резерве, в зависимости от нагрузки на узел ХВО.

5.9.Режимная карта натрий-катионитовых фильтров I и II ступеней котельной по ул. Товарищеская

№ пп Показатели Ед. изм. Значение
Фильтры I ступени.
Диаметр фильтра мм
Катионит Сульфоуголь
Высота загрузки мм
Площадь фильтра м2 3,14
Объем катионита м3 6,9
Рабочая обменная способность гр-экв/м3
Умягчение
мкг-экв/ кг 1000-200
мкг-экв/ кг 1500-200
9 Среднее количество воды за фильтроцикл Ер. * Gк. G ум.= Жисх. - Жум. м3
Взрыхление
Время взрыхления мин 20-30
Регенерация
кг
кг
Процент содержания соли в растворе %
м3 4,14
Скорость пропуска раствора соли м3/ч 3-5
Время пропуска солевого раствора мин.
Время контакта мин.
Фильтры II ступени.
Диаметр фильтра мм
Катионит Сульфоуголь
Высота загрузки мм
Площадь фильтра м2 0,23
Объем катионита м3 0,23
Рабочая обменная способность г-экв/м3
Жесткость воды при включении в работу мкг-экв/кг 15-20
Жесткость при срабатывании фильтра мкг-экв/кг 15-20
Среднее количество воды за фильтроцикл м3
Взрыхление
Время взрыхления мин. 10-15
Регенерация
Удельный расход соли на 1м3 сульфоугля кг
Расход технической соли на регенерацию кг
Процент соли в растворе %
Расход раствора соли на регенерацию м3 0,138
Скорость пропуска соли м3/час 3-5
Время контакта мин. 10-15
Экспликация оборудования ХВО
№ пп Наименование оборудования Характеристика оборудования Кол-во
Натрий катионитовый фильтрI D=2000мм
2 Натрий катионитовый фильтрII D=1000мм
Бак-мерник раствора соли V=3 м3
Солерастворитель С-0.2-0.5 D=1000мм
Насос перекачки раствора соли К-20-30 G=20м3/ч, Н=30м.в.ст, n=2900об/мин,N=4кВт
Вакуумный деаэратор ВД-50 G=50м3/час
Вакуумный деаэратор ВД-25 G=25м3/час
Бак промывки фильтров ОСТ-34-42-395-77 V=30 м3
Насос промывки фильтра К-45-30 G=45м3/ч, Н=30м.в.ст, n=2900об/мин,N=5кВт
Бак подпиточной воды БП-200 V=200 м3
Насос подпиточной воды К-90-35 G=90м3/ч, Н=35м.в.ст, n=2900об/м, N=15кВт
Подогреватель холодной воды 3-12-ОСТ.34-588-68 Q=1,1Гкал/ч,tmax=40СGт/н=10т/ч,F=30м2.
Подогреватель хим.очищенной воды 3-13-ОСТ.34-588-68 Q=2,2Гкал/ч,tmax=81С Gт/н=50т/ч,F=60м2
Солевая яма
Насос раствора соли 8/15ДСУ4 G=8м3/ч, Н=15м.вюст, n=2900об/м,N=3кВт
Охладитель выпари ОВВ-8 F=8м2
Насос подпиточной воды К-20-50 G=20м3/ч, Н=50м.в.ст, n=2900об/м, N=15кВт

На нужды горячего водоснабжения и подпитку поступает вода из существующего хозяйственно-питьевого водопровода котельной, отвечающая требованиям ГОСТ 2874–82 «Вода питьевая».

Требования к качеству подпиточной воды приняты по «Нормам качества подпиточной и сетевой воды тепловых сетей НР 34–70–051–83».

Для уменьшения содержания железа в проекте предусматривается установка обезжелезивания. Умягчение воды по способу натрий-катионирования.

Обезжелезивание воды происходит в фильтрах обезжелезивания. Через фильтр, загруженный сульфоуглем, пропускается аэрированная вода в течение 170–180 часов. За это время на поверхности зерен сульфоугля образуется пленка из соединений железа, служащая в дальнейшем катализатором. Когда потери напора в слое загрузки возрастают до 10 м. вод. ст., фильтр отключают на промывку.

Химводочистка воды принята по схеме двухступенчатого Na-катионирования. К установке принят блок из четырех Na-катионитовых фильтров. Два фильтра работают на 1-ой ступени умягчения, один - на 2-ой ступени умягчения и один резервный.

В баке мокрого хранения соли поддерживается постоянный уровень при помощи бачка постоянного уровня, 26% раствор соли из бака мокрого хранения поступает в емкость для хранения. Концентрированный раствор соли при помощи эжектора разбавляется до 7% концентрации и подается на регенерацию.

Для подпитки сети используется вода из системы водоснабжения, которая после химводоочистки поступает в вакуумную деаэрационную установку ДСА–50. Деаэрированная вода через регулятор давления поступает в обратный сетевой трубопровод для подпитки теплосети.

7.3. Выбор схемы водоподготовки

Расход пара на технологию D Т = 18 т/ч.

Количество потерянного конденсата:

G к =(1- ) D Т = (1-0,7) 18=5,4 т/ч

где - доля возврата конденсата, принимаем (60-70%);

D Т – расход пара на производство, т/ч.

Количество возвращаемого конденсата:

G Т = D Т - G К = 18 - 5,4 = 12,6 т/ч

Расход пара на деаэрацию и подогрев сырой воды.

Принимается равной 9% от D Т:

D д + D св = 0,09 D Т = 0,09 18 = 1,62 т/ч

Потери пара внутри котельной принимается равными 2 % от D T:

D пот =0,02 D T =0,02 18=0,36 т/ч

Полное количество пара, производимого котельной:

D = D T + D д + D св + D пот = 18+1,62+0,36=19,98 т/ч

Количество пара, которое можно получить из расширителя непрерывной продувки:

где
т/ч

Р пр – величина прдувки (2-10%), принимаем 3%;

i l 1 - энтальпия котловой воды при давлении в котле

826,1кДж/кг;

i ll н иi l 2 – энтальпия пара и воды при давлении в

расширителе (1,5 кгс/см 2);

i ll н = 2692,39 кДж/кг;i 1 2 = 464,54 кДж/кг;

 - степень сухости пара, выходящего из расширителя

 под – КПД подогревателя (расширителя) (0,98)

Количество воды уходящей из расширителя:

G 1 пр = G пр - D пр =0,6 – 0,1=0,5 т/ч

Количество питательной воды, поступающей в котлы:

G пит = D + G 1 пр =19,98+0,5=20,48 т/ч

Общее количество воды на выходе из деаэратора (питательная вода):

G д = G пит =20,48 т/ч

Если принять, что количество выпара из деаэратора питательной воды равно 0,4% расхода подаваемой через него воды, то:

D вып =0,004 G д =0,004 20,48=0,08 т/ч

Тогда производительность химводоочистки должна быть:

G хво = G к + G 1 пр + D пот + D вып =18+0,5+0,36+0,08=18,94 т/ч

Расход сырой воды на ХВО учитывается величиной коэффициентаk= 1,1-1,25. Этот коэффициент учитывает количество воды, идущей на взрыхление катионита, его регенерацию, обмывку и прочие нужды ХВО

G св = k G хво =1,25 18,94=23,68 т/ч

Так как от производственных потребителей конденсат возвращается не полностью, то питание котлов предусматривается химически очищенной водой. Согласно нормам качества питательной воды для экранированных котлов давлением до 14 ата не должна превышать 20 мг-экв/кг.

(Справочник эксплуат-ка газ. котельных стр.223)

Замена в котлах твердого и жидкого топлив газовым позволяет увеличить их производительность за счет: дополнительного экранирования топок; повышения теплового напряжения топочного объема; правильного выбора количества горелок, их конструкции и мест установки; улучшения условий теплопередачи в конвективной части котла благодаря уменьшению загрязненности поверхностей нагрева; увеличения к.п.д. котла благодаря отсутствию потерь тепла с механическим и химическим недожогами и возможности сжигания газа с меньшими избытками воздуха.

Одной из самых восприимчивых к накипи сфер, где на сегодня обойтись без умягчающих установок не получится, является теплоэнергетика. Чтобы люди были обеспечены горячей, ровно, как и холодной водами и отоплением в стужу, и круглый год, горячей, непосредственно, нужно позаботиться и о качестве технической воды. Потому и химводоочистка котельных до сих пор удерживает главенствующее место среди доступных средств получить гладкие поверхности оборудования, без особых усилий.

В чем заключается должностная инструкция аппаратчика химводоочистки котельной?

К питьевой воде преъявляются особые требования. Об этом знают абсолютно все. Если аппаратчик хочет иметь здоровье, то он, прежде всего, должен употреблять не только качественную пищу, но и не менее качественную воду. Потому подготовка воды в любой сфере, среде, где проживают люди, неотрывно будут связаны непосредственно с водоподготовкой питьевой воды. Но какая же тут связь аппаратчика химводоочистки котельной и не только?

Потребность в воде проявляет себя не только в необходимости человека чем-то питаться и что-то пить. Вот тут и стали образовываться первые запросы на техническую воду. Есть несколько бытовых запросов по бытовой воде, которые требуют чистой технической воды, и в питьевом качестве воды особой нужды нет.

Есть еще отопление, которое тоже откладывает свой неизгладимый осадок на поверхности. При этом, должностная инструкция аппаратчика заключается в слежке за работой котельной и ее систем. И уже в этой сфере химводоочистка котельной, как минимум должна быть в обязательном порядке, если собственник отопительной системы не выбрал другого способа умягчить техническую воду. Для котла качественная очистка воды напрямую связана со сроком работы оборудования. И чем чище вода подается в котельную, тем дольше и качественнее такая котельная работает. Своевременная подача умягченной воды в систему означает только одно – на внутренних поверхностях не только котла и сопутствующего оборудования, но еще и на поверхностях бытовых приборов в дальнейшем не будет образовываться накипь, и значит не будет проблемы с известковым налетом, который так легко образуется и так сложно устраняется, с тяжелыми последствиями.

Означает умягчение:

  • Это еще и антикоррозионный раствор;
  • Это антибактерицидный раствор.

Как известно химикаты в воду могут добавляться по-разным запросам, и только механическая чистка воды от твердых примесей не требует их применения. Правда, сказать, что химикаты не нужны совсем, нельзя. При фильтрации в механическом очистителе могут накапливаться бактерии. Они начинают цвести и тем самым значительно снижают пропускную способность фильтрующей засыпки.

На каком этапе простейшей водоподготовительной системы могут использовать химическое очищение воды? Для котельных такие очистки применимы и возможно воспользоваться магнитным или электромагнитным облучением в качестве очистной процедуры нет пока никакой возможности.

Самая простая водоподготовительная схема всегда начинается с осветлительной части. Чтобы получить прозрачную воду, сперва следует обратиться к должностной инструкции аппаратчика, а уже потом убрать из воды все видимые твердые примеси. А поскольку котельные, особенно в частных домах могут использовать первичную воду, то осветление или механическая чистка будут в такой системе обязательным элементом. Здесь устранят все видимые примеси, делающие воду мутной.

При наличии в воде солей металлов, наступает черед устранить соли кремния, соли железа. Потом в обязательном порядке устраняются бактериальные примеси и приходит черед умягчения. Химводоочистка котельных часто подразумевает непосредственно умягчение котловой воды путем добавки туда химических реагентов. Дальше уже все зависит от вида котельной и грамотности аппаратчика, т.к. следующие этапы могут быть специфическими, например, устранение растворенных газов. Для паровой котельной такие примеси в воде губительны. Они могут привести к поломкам и скорому износу.

Любая химическая сопровождается образованием новых веществ, которые потом либо растворяются в воде, либо выпадают в осадок, давая, таким образом, полностью очистить воду от нежелательной примеси, без лишних затрат. Но с появлением безреагентных приборов так называемая ХВО, теряет свою актуальность.

Котельные и их очистные проблемы

Котельная вода кажется обычному потребителю чем-то естественным. Разве нужна такой воде какая-то обработка, ведь централизованная очистка полностью готовит воду к работе в такой системе. В этом случае обычный человек забывает о таком понятии, как накипь и известковые отложения на внутренних поверхностях оборудования.

К чему приводит некачественная вода дома, на даче, в частном коттедже, знает каждый не понаслышке. Поломки бойлера и частота замены чайника раз в полгода – яркие свидетельства работы некачественной воды. Для котельной процесс запущенный накипью, может вызвать более ощутимые последствия.

Главным назначением работы является обеспечение города или села горячей водоподачей и теплом в домах. Для этого воду следует греть постоянно, без перерывов, круглосуточно, круглогодично. Для таких процедур, умягченная вода должна поступать в систему точно также без перебоев. Как это обеспечить? Только чисткой и подготовкой воды в режиме он-лайн, нон-стоп.

Добиться такого эффекта можно по-всякому и одна из вариаций, как раз химводоочистка котельных. В котельную вода попадает сырая, то есть мало очищенная . Во всяком случае, вопросам устранения жесткости внимания никто не уделял. Для того, чтобы передать воду дальше в систему ее следует нагреть. Чем собственно теплообменник и занимается. Это определенная сложность для работы аппратчика котельной. Сперва воду нагревают до температуры, не более 30 градусов. В таком слегка подогретом состоянии накипь только начинает формироваться, потому воду в срочном порядке дальше отправляют в умягчители, катионного типа.

Здесь воду фильтруют через катионную ионообменную смолу. Соли жесткости остаются в ней, а соли натрия уходят в новую мягкую воду.

ХВО

Данный вид очистки относится к химической, по определенным причинам. Здесь должны проходить определенные химические реакции и вид очистки считался ХВО . Но непосредственно в процессе фильтрации химические реакции происходят, но дополнительно химикаты не используются. Просто происходит замена одних ионов на другие. А вот когда забитые картриджи восстанавливают, тогда химикаты точно используют, т.к. устранить из смолы соли жесткости можно только массированной атакой сильно соленого раствора.

Что касается обычных , то по аналогии с ними были созданы дозаторы с автоматическим блоком управления. Они замеряют электропроводимость воды, спустя определенный отрезок времени. И если вода показывает высокую проводимость электричества, значит вода обладает высоким порогом жесткости. И значит пришло время примешивать в состав воды умягчающие средства и ХВО. Аналогия та же, что и при промывке с целью профилактики. Только при дозированном умягчении, соли жесткости не оседают на поверхностях, они вступают в реакцию с химикатами и выпадают в легко уносимый осадок, что очень удобно для потребителя. Правда, расходы химикатов в данном случае, назвать экономными вряд ли получится.

Химводоочистка котельных помогает быстро решить проблему образования нежелательного осадка на поверхностях оборудования. Если средств на магнитную или электромагнитную установку пока нет, то такой простой способ получить быстро мягкую воду вполне имеет право на жизнь. Точно также в котельной на даче, где использование котла непостоянное, есть смысл просчитать затраты на такую систему ХВО и полноценную электромагнитную обработку. Все-таки в российских реалиях и воровство не следует забывать. Можно потратиться на компактную магнитную установку, а ее через полгода снимут. С реагентным дозатором риск кражи ниже.