Устройство для импульсной очистки поверхностей нагрева жаротрубных и газотрубных котлов

В процессе эксплуатации котла для очистки экранных поверхностей нагрева применяют паровую и пароводяную об­дувку, а также вибрационную очистку, а для конвективных поверхностей нагрева - паро­вую и пароводяную обдувку, вибрационную, дробевую и акустическую очистку или самооб­дувку.

Наибольшее распространение имеют паровая обдувка и дробевая очистка. Для ширм и вертикальных пароперегревателей наиболее эффективной является вибрацион­ная очистка. Радикальным является приме­нение самообдувающихся поверхностей на­грева с малым диаметром и шагом труб, при которых поверхности нагрева непрерывно поддерживаются чистыми.

Паровая обдувка. Очистка по­верхностей нагрева от загрязнений может быть осуществлена за счет динамического воздействия струй воды, пара, пароводяной смеси или воздуха. Действенность струй определяется их дальнобойностью.

Наибольшей дальнобойностью и термическим эффектом, способствующим растрескиванию шлака, обладает струя воды. Однако обдувка водой может вызвать переохлаждение труб экранов и повреждение их металла. Воздушная струя имеет резкое снижение скорости, создает небольшой динамический напор и эффективна только при давлении не менее 4 МПа.

Применение воздушной обдувки затруднено необходимостью установки компрессоров высокой производительности и давления.

Наиболее распространена обдувка с применением насыщенного и перегретого пара. Струя пара имеет небольшую дальнобойность, но при давлении более 3 МПа ее действие до­статочно эффективно. При давлении пара 4 МПа перед обдувочным аппаратом динамический напор струи на расстоянии примерно 3 м от сопла состав­ляет более 2000 Па.

Для удаления отложений с поверхности нагрева динамический напор струи должен составлять примерно 200-250 Па для рыхлых золовых отложений, 400-500 Па для уплот­ненных золовых отложений, 2000 Па для оплавленных шлаковых отложений.

Обдувочные аппараты. Конструктивная схема обдувочного аппарата приведена на рис. 101.

Рис. 101. Обдувочный аппарат:

1, 5 – электродвигатели; 2 – обдувочная труба; 3, 6 – редуктора;

4 – каретка; 7 – монорельс; 8 – звездочка; 9 – бесконечная цепь;

10 – запорный клапан; 11 – тяга с клином; 12 – рычаг;

13 – неподвижный паропровод; 14 – стержень

Обдувочный аппарат включает в себя:

· электродвигатель 1, укрепленный на каретке 4;

· редуктор 3, предназначенный для вращения обдувочной трубы 2;

· электродвигатель 5 и редуктор 6, укрепленные на монорельсе 7, предназначенные для поступательного движения обдувочной трубы 2;

· механизм поступательного перемещения обдувочной трубы, состоящий из каретки 4, которая перемещается по полкам монорельса 7, звездочек 8 и бесконечной цепи 9;


· запорный клапан 10, автоматически открывающий пар в обдувочную трубу после ее выхода на позицию обдувки; механизм, управляющий запорным клапаном 10 и состоящий из тяги с клином 11 и рычага 12.

Обдувочная труба соединена при помощи сальника с неподвижным паропроводом 13, подводящим к ней пар от запорного клапана. Двутавровый монорельс 7 несет на себе все указанные механизмы, а сам крепится к каркасу котла. При получении импульса от предыдущего обдувочного аппарата, закончившего свою работу, пускатель включает электродвигатели 1 и 5. При этом включается сигнальная лампа, расположенная на щите программного управления обдувкой. Каретка 4, перемещаясь по монорельсу, вводит обдувочную трубу 2 в газоход. Когда обдувочная труба выходит на позицию обдувки, стержень 14, воздействуя на рычаг, увлекает при помощи тяги клин 11, который через толкатель отжимает запорный паровой клапан, открывающий доступ пара в обдувочную трубу. Пар из обдувочной трубы выходит через сопла, обдувая поверхность нагрева.

При поступательно-вращательном движении трубы 2 обдувка производится по винтовой линии. После полного ввода обдувочной трубы внутрь газохода штифт, установленный на приводной цепи 9, воздействуя на концевые выключатели электродвигателя 5, переключает прибор на обратный ход. При этом обдувка поверхности нагрева производится так же, как и при движении обдувочной трубы внутрь газохода.

До того как сопловая головка будет выведена из газохода, стержень 14, воздействуя через рычаг 12 на клин 11, выведет его в исходное положение, и запорный паровой клапан под действием пружины закроется, прекратив доступ пара в обдувочную трубу.

С возвратом обдувочной трубы в исходное положение штифт, установленный на приводной цепи 9, воздействуя на концевые выключатели, отключает электродвигатели 1 и 5, и следующий по схеме прибор получает импульс на включение.

Зона действия обдувочного аппарата до 2,5 м, а глубина захода в топку до 8 м. На стенах топки обдувочные аппараты размещаются так, чтобы зона их действия охватывала всю поверхность экранов.

Обдувочные аппараты для конвективных поверхностей нагрева имеют многосопловую трубу, не выдвигаются из газохода и только вращаются. Число сопл, расположенных с двух сторон обдувочной трубы, соответствует числу труб в ряду обдуваемой поверхности нагрева.

Для регенеративных воздухоподогрева­телей применяются обдувочные аппараты с качающейся трубой. Пар или вода подводит­ся к обдувочной трубе, и вытекающая из сопла струя очищает пластины воздухоподо­гревателя. Обдувочная труба поворачивается на определенный угол так, что струя попадает во все ячейки вращающегося ротора воздухо­подогревателя. Для очистки регенеративного воздухоподогревателя парогенераторов, ра­ботающих на твердом топливе, в качестве обдувочного агента применяется пар, а паро­генераторов, работающих на мазуте - щелоч­ная вода. Вода хорошо промывает и нейтра­лизует сернокислотные соединения, имею­щиеся в отложениях.

Пароводяная обдувка. Рабо­чим агентом обдувочного аппарата служит вода парогенератора или питательная вода.

Аппарат представляет собою сопла, установленные между трубами экранов. Вода в сопла подается под давлением, и в результате падения давления при прохождении через сопла из нее образуется пароводяная струя, направленная на противоположно расположенные участки экранов, фестонов, ширм. Высокая плотность пароводяной смеси и наличие недоиспарившейся в струе воды оказывают эффективное разрушающее действие на отложения шлака, который удаляется в нижнюю часть топки.

Вибрационная очистка. Вибрационная очистка основана на том, что пpи колебании труб с большой частотой нарушается сцепление отложений с металлом поверхности нагрева. Наиболее эффективна вибрационная очистка свободно подвешенных вертикальных труб, ширм и пароперегрева­телей. Для вибрационной очистки преимуще­ственно применяют электромагнитные вибра­торы (рис. 102).

Трубы пароперегревателей и ширм прикрепляются к тяге, которая выходит за пределы обмуровки и соединяется с вибра­тором. Тяга охлаждается водой, и место ее прохода через обмуровку уплотнено. Электро­магнитный вибратор состоит из корпуса с яко­рем и каркаса с сердечником, закрепленных пружинами. Вибрация очищаемых труб осуществляется за счет ударов по тяге с частотой 3000 ударов в минуту, амплитуда колебаний 0,3-0,4 мм.

Дробеочистка. Дробеочистка при­меняется для очистки конвективных поверх­ностей нагрева при наличии на них уплотнен­ных и связанных отложений. Очистка проис­ходит в результате использования кинетиче­ской энергии падающих на очищаемые поверх­ности чугунных дробинок диаметром 3-5 мм. В верхней части конвективной шахты парогенератора помещаются разбра­сыватели, которые равномерно распределяют дробь по сечению газохода. При падении дробь сбивает

Рис. 102. Вибрационное устройство для очи­стки вертикальных труб:

а - вид сбоку; б - сопряжение виброштанги с обогреваемыми

трубами, вид сверху; 1 - виб­ратор; 2 - плита; 3 - трос;

4 - противовес; 5 - виброштанга; 6 - уплотнение прохода

штан­ги через обмуровку; 7 - труба

осевшую на трубах золу, а за­тем вместе с ней собирается в бункерах, расположенных под шахтой. Из бункеров дробь вместе с золой попадает в сборный бункер, из которого питатель подает их в трубопровод, где масса золы с дробью подхватывается воздухом и выносится в дробеуловитель, из которого дробь по рукавам вновь подается в разбрасыватели, а воздух вместе с части­цами золы направляется в циклон, где про­исходит их разделение. Из циклона воздух сбрасывается в газоход перед дымососом, а зола, осевшая в циклоне, удаляется в систе­му золоудаления котельной установ­ки.

Транспорт дроби осуществляется по вса­сывающей или нагнетательной схеме. При всасываемой схеме разрежение в системе создается паровым эжектором или вакуум-насосом. При нагне­тательной схеме транспортирующий воздух подается в инжектор от компрессора. Для транспорта дроби необходима скорость воз­духа 40 – 50 м/с.

В последнее время дробеочистка практически не используется. Это связано с деформацией поверхностей нагрева и относительно низкой эффективностью.

Классификация наружных отложений

В составе золы имеются в небольшом количестве легкоплавкие соединения с температурой плавления 700 – 850 о С. Это в основном хлориды и сульфаты щелочных металлов . В зоне высоких температур ядра факела они переходят в парообразное состояние и затем конденсируются на поверхности труб, так как температура чистой стенки всегда менее 700 о С.

Среднеплавкие компоненты золы с температурой плавления 900 – 1100 о С могут образовать первичный липкий слой на экранных трубах и ширмах, если в результате не налаженного топочного режима факел будет касаться стен топки, и вблизи экранных труб будет находиться высокотемпературная газовая среда.

Тугоплавкими компонентами золы являются, как правило, чистые окислы . Температура их плавления (1600 – 2800 о С) превышает максимальную температуру ядра факела, поэтому они проходят зону горения без изменения своего состояния, оставаясь твердыми. Ввиду малых размеров частиц эти компоненты в основном уносятся потоком газов и составляют летучую золу.

В зоне высоких температур газов (выше 700 – 800 о С) на поверхности чистой трубы вначале происходит конденсация из газового потока легкоплавких соединений и образуется первичный липкий слой на трубах. На него одновременно налипают твердые частицы золы. Затем он отвердевает и становиться плотным первоначальным слоем отложений, крепко сцепленным с поверхностью трубы. Температура наружной поверхности слоя повышается и конденсация прекращается.

Далее на шероховатую поверхность этого слоя набрасываются мелкие и твердые частицы тугоплавкой золы, образуя внешний сыпучий слой отложений. Таким образом, в этой области температур газов на поверхности труб чаще всего присутствуют два слоя отложений: плотный и сыпучий .

Сыпучие отложения распространены в зоне относительно низких температур газового потока (менее 600 – 700 о С), характерных для поверхности конвективной шахты.

Сыпучие отложения преимущественно образуются на тыльной стороне трубы по отношению к направлению газового потока, в образующейся сзади трубы вихревой зоне (рисунок 3.32). На лобовой стороне сыпучие отложения образуются лишь при малых скоростях потока (менее 5 – 6 м/с) или при наличии в потоке очень тонкой летучей золы.

Частицы золы, участвующие в образовании сыпучих отложений разделяют на три группы.

К первой группе относят самые мелкие фракции, так называемые безынерционные частицы, которые настолько малы, что двигаются по линиям тока газов, и поэтому вероятность их осаждения на трубах мала. Предельный размер частиц, относящихся к этой группе, составляет около 10 мкм.



Ко второй группе относятся крупные фракции размером свыше 30 мкм. Эти частицы обладают достаточно большой кинетической энергией и при контакте с сыпучими отложениями разрушают их.

Третью группу составляют фракции золы размером от 10 до 30 мкм. При обтекании газовым потоком трубы эти частицы преимущественно оседают на ее поверхности и образуют слой отложений. В результате размер слоя сыпучих отложений определяется динамическим равновесием процессов постоянного оседания средних фракций золы и разрушения осевшего слоя более крупными частицами.

Рисунок 3.32 – Загрязнение труб сыпучими отложениями при разных направлениях и скоростях движения газов

Одним из методов очистки поверхностей нагрева является использование динамического воздействия на слой отложений струи пара, воды или воздуха. Действенность струй определяется их дальнобойностью, в пределах которой струя сохраняет достаточный динамический напор для разрушения отложений. Наибольшей дальнобойностью и термическим эффектом воздействия на плотные отложения обладает водяная струя.

Аппараты этого типа находят применение для очистки экранов топочных камер. Однако обдувка водой требует строго расчета, чтобы исключить резкое переохлаждение металла после удаления отложений.

Для очистки радиационных поверхностей нагрева и конвективных перегревателей широкое распространение получили многосопловые выдвижные аппараты, работающие на насыщенном или перегретом паре с давлением около 4 МПа.

Для очистки ширм и коридорных трубных пакетов в области горизонтального газохода применяют вибро-очистку. Ее действие основано на том, что при колебании труб с большой частотой нарушается сцепление отложений с металлом. В этих целях используют вибраторы с водоохлажденными штангами, передающими воздействие на очищаемую поверхность.

Наиболее эффективным способом очистки конвективных поверхностей в опускной шахте парового котла от сыпучей золы является дробеочистка . В этом случае используют кинетическую энергию падающих чугунных дробинок диаметром 3 – 5 мм. Дробь подается вверх воздушным потоком и распределяется по всему сечению шахты. Расход дроби на очистку определяют исходя из оптимальной интенсивности «орошения» дробью – 150 – 200 кг/м 2 сечения конвективной шахты. Время очистки составляет обычно 20 – 60 с.

Обязательным условием успешного использования дробевой очистки является регулярность ее применения сразу после пуска котла в эксплуатацию при еще практически чистых поверхностях нагрева.

В последнее время находит распространение метод термоволновой очистки поверхностей нагрева конвективной шахты при помощи акустических низкочастотных волн, генерируемых в специальной импульсной камере взрывного горения.

Очистку вынесенных за пределы котла регенеративных воздухоподогревателей (РВП) осуществляют путем обдувки теплообменной набивки РВП перегретым паром (на 170 – 200 о С выше температуры насыщения), реже применяют обмывку водой (липкие отложения она удаляет, но увеличивает коррозию), а также применяют метод ударной волновой очистки и термический способ очистки . Последний основан на периодическом повышении температуры набивки до 250 – 300 о С за счет отключения подачи воздуха в аппарат РВП. При этом высушиваются липкие отложения и испаряется сконденсировавшаяся серная кислота.

Министерство образования и науки Российской Федерации

_________________

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИНСТИТУТ ЭНЕРГЕТИКИ И ТРАНСПОРТНЫХ СИСТЕМ

Энергомашиностроительное отделение

Кафедра Реакторы и Котельные Установки

ДИСЦИПЛИНА: КОТЕЛЬНЫЕ УСТАНОВКИТЕМА: ОЧИСТКА ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОВ ОТ

НАРУЖНЫХ ОТЛОЖЕНИЙ

«_____»____________2013 г.

Санкт-Петербург

Механизмы образования отложений. .......................................................................................

Очистка поверхностей нагрева от образующихся золовых отложений методом обдувки. 6

Виброочистка поверхностей нагрева........................................................................................

Дробеочистка “хвостовых” поверхностей нагрева. ..............................................................

Список использованных источников.........................................................................................

1 Механизмы образования отложений.

Наружные загрязнения возникают в процессе эксплуатации на экранных поверхностях нагрева, на ширмах топ­ки, в холодной воронке, первых рядах труб перегревателей котла, работающего на пылевидном твердом топливе. Эти отложения образуются при более высокой температуре газов, чем температура размягчения золы на выходе из топки, а также в высокотемпературных зонах топки при плохой аэродинамической организации топочного процесса. Обычно шлакование начинается в промежутках между экранными трубами, а также в застойных зонах и участках топ­ки. Если температура топочной среды в зоне образования шлаковых отложений ниже температуры начала деформации золы, то наружный слой шлака состоит из отвердевших частиц. При более высокой температуре наружный слой шлака может оплавляться, что способствует налипанию новых частиц и увеличению шлакования.

Рост шлаковых отложений может продолжаться неограниченно. Характерной формой шлаковых отложений является оплавленная, твердая, иногда стекловидная структура. В них также встречаются металлические включения, которые возникают при плавлении компонентов золы, содержащих оксиды металлов.

Значительно влияет на загрязняющие отложения скорость потока газов – повышение скорости дымовых газов и концентрации в них золы и уноса наблюдается в газовых коридорах, между стенками газохода и трубами, при большом расстоянии между трубами или змеевиками и т. п.

Загрязнение золой и сажей поверхностей нагрева ведет к повышению температуры

Загрязнение экранных труб и первых рядов кипятильных труб ведет к повышению температуры перегретого пара, температуры газов, шлакованию. Одностороннее шлакование и загрязнение золой газохода могут вызвать перекос температуры и скорости газов, что ухудшает работу и снижает надежность последующих поверхностей нагрева.

На экранных трубах в топочной камере и поверхностях нагрева в конвективных газоходах могут образовываться плотные отложения обычно при сжигании мазута. Причем сернистые мазуты при сжигании с высокими избытками воздуха дают, плотные отложения на трубах перегревателя и воздухопаронагревателя.

При сжигании мазутов с большим содержанием ванадия на трубах перегревателей, с температурой стенок 600–650ºС образуются плотные ванадиевые отложения.

Появление отложений сажи и уноса на хвостовых поверхностях нагрева может быть обнаружено по увеличению сопротивления (разность разрежений после газохода и перед ним).

Основной способ защиты от шлакования ширмовых и конвективных перегревателей – правильный выбор температуры газов перед поверхностями нагрева. Этого можно достигнуть выполнением топочной камеры такой высоты, при которой

обеспечивается охлаждение газов до необходимой температуры, выравниванием поля температур на выходе из топки, применением рециркуляции газов в верхней части, топочной камеры.

Средства защиты поверхностей нагрева от наружных отложений по характеру действия можно разделить на активные и профилактические. Активными средствами предусматривается влияние на качественные и количественные характеристики золошлаковых отложений, т. е. эти средства направлены на предотвращение образования отложений и снижение их механической прочности. К ним относятся различные присадки, снижающие интенсивность образования отложений или их прочность, способы сжигания топлив в топках котлов и т. п.

Формирование отложения на поверхностях нагрева – результат ряда сложных физико-химических процессов.

Отложения по температурной зоне образования подразделяются отложения на низкотемпературных и на высокотемпературных поверхностях нагрева. Первые – формируются в зоне умеренных и низких температур дымовых газов на поверхностях нагрева, имеющих сравнительно низкую температуру стенки (экономайзеры и "холодный" конец воздухоподогревателя). Вторые – образуются в зоне высоких температур стенки топочной камеры, на экономайзерах котлов с высокими параметрами пара, пароперегревателях, горячем конце воздухоподогревателя.

По характеру связи частиц и механической прочности слоя отложения подразделяются на сыпучие, связанные рыхлые, связанные прочные и сплавленные (шлаковые).

По минеральному и химическому составам различают щелочно–связанные, фосфатные, алюмосиликатные, сульфитные и отложения с большим содержанием железа. В зависимости от места нахождения по периметру омываемой газовым потоком трубы отложения делятся на лобовые, тыльные и отложения в зонах минимальной толщины пограничного слоя.

Спекшиеся отложения на лобовых поверхностях труб обычно образуют гребни, высота которых может достигать 200–250 мм.

На тыльной стороне высота отложений бывает меньше. При определенных условиях спекшиеся отложения могут перекрывать межтрубные пространства.

Образование отложений может быть связано не только с осаждением золы, но и с конденсацией на относительно холодных трубах поверхностей нагрева щелочных соединений или оксида кремния, сублимировавшихся из минеральной части топлива в процессе его горения. Температурные пределы и интенсивность конденсации паров щелочных соединений и оксида кремния на поверхностях нагрева зависят в основном от их парциального давления в продуктах сгорания.

В ряде случаев на формирование отложений большое влияние оказывают химические процессы, происходящие в слое отложений (образование сульфатосвязанных соединений и др.).

Рисунок 1. Зависимость коэффициента загрязнения поверхностей нагрева от скорости газов:

а – шахматные пучки труб; б – коридорные пучки труб

Существенно влияют на загрязнения труб их диаметр, шаг между трубами, а также порядок расположения – коридорный или шахматный. Уменьшение диаметра труб и продольного шага в трубных шахматных пучках значительно уменьшает загрязнение. В коридорных пучках труб загрязнения больше, чем в шахматных.

Рисунок 2. Загрязнение труб при шахтном расположении (по данным ВТИ):

а – восходящий поток; б – нисходящий поток; в – горизонтальный поток

2 Очистка поверхностей нагрева от образующихся золовых отложений методом обдувки.

Обдувка является основным и наиболее распространенным средством защиты поверхностей нагрева от шлакования и заноса золой. Несмотря на то, что обдувка должна носить профилактический характер, в процессе эксплуатации нередко появляется необходимость в удалении сформировавшихся отложений, что имеет место также на современных котлах. Исходя из этих соображений, необходимо обусловить два вида работы струи: золообдувку и расшлаковку. Первая относится к сыпучим, вторая - к прочным отложениям.

Энергия струи должна расщепить отложения на мелкие частицы и привести их в состояние витания, после чего поток топочных газов эвакуирует их за пределы агрегата.

Все известные в энергетической практике виды обдувки производят с помощью касательного, лобового или поперечного омывания.

Касательное омывание может производят либо вращающимся соплом, как это имеет место в приборе ОПР-5, либо при обдувке диагональных коридоров водяного экономайзера прибором ОПЭ. При касательном омывании струя как бы строгает слой отложений.Лобовое омывание характеризуется двумя признаками: перпендикулярностью между осью струи и слоем

шлакозоловых отложений и совмещением в одной плоскости осей струй и трубы. При лобовом воздействии на трубу струя как бы разрубает шлаковую оболочку вдоль оси трубы по ее образующей и стремится сбросить ее. В чистом виде этот способ не применяют ввиду значительной сложности его осуществления и опасности эрозионного износа обдуваемых труб.

При поперечном омывании, струя воздействует по нормалям к трубе. В отличие от предыдущего струя пересекает тело трубы и шлаковые отложения на ней по схеме перерубания бруса поперек волокон. Поперечное омывание, например, имеет место при сочетании

поступательного движения обдувочной струи с ее вращением.

Вследствие сложной конфигурации котельных пучков ни один из описанных видов омывания не существует изолированно. Но в каждом частном случае обдувки, как правило, тот или иной вид омывания преобладает над остальными .

При расширении пар снижает температуру (примерно до 100 °С). В топке же и газоходах температура значительно выше. В результате местного неравномерного охлаждения шлака струей в нем возникают температурные поля, а следовательно, и напряжения. В проточных отложениях появляются трещины.

Расщепление шлаковых отложений обдувочной струей происходит под воздействием трех факторов: термического, динамического и абразивного.

Специфической особенностью паровой обдувочной струи является присутствие влаги, доля которой может колебаться от 8 до 18 %.

Осаждаясь на поверхность шлака, капельки влаги мгновенно испаряются, поскольку вода в них нагрета до температуры насыщения, размер их мал, а тепловой напор шлака велик. В результате испарения капелек влаги происходит дополнительное охлаждение шлака, термические напряжения в нем еще более увеличиваются.

Поскольку воздушная струя на выходе из сопла всегда холоднее паровой по меньшей мере на 200 °С, то в рамках термического фактора воздушная обдувочная струя при прочих равных условиях эффективнее паровой. Даже при жидком шлаке, при резком охлаждении его обдувочной струей, шлаковая корка лишается пластических свойств, приобретает повышенную хрупкость.

Угол между направлением набегающей струи и омываемой поверхностью принято называть углом атаки. Наибольшей дальнобойностью обладает струя с углом атаки 90°. Ударная сила струи зависит от скорости вытекания угла атаки и расстояния.

Рисунок 3. Обдувочный прибор Ильмарине-ЦКТИ для обувки экранных поверхностей нагрева: 1 - электродвигатель; 2 - ручной привод; 3 - клапанный механизм;

4 - редуктор; 5 - сопловая головка.

Обдувочные приборы расставляют таким образом, чтобы зоны активного действия обдувочных струй покрывали все очаги шлакования и заноса золой. Кроме того следует помнить, что динамический напор должен быть достаточным для разрушения шлакового образования, но при этом не разрушить трубы. По данным разных исследований и наблюдений, верхний предел принимается в интервале 1000-1100 кг/м2 , нижний - в интервале 25-200 кг/м2 на расстоянии 1 мм от омываемой поверхности нагрева.

Обычно обдувочные аппараты питаются паром давления 22-30 кг/см2 .

Питание системы обдувки паром может быть осуществлено по автономной или групповой схеме. При автономной схеме система обдувки питается паром обдуваемого котла. Групповая же схема характеризуется наличием какого-либо постороннего источника питания, например отбора турбин, центрального пароструйного компрессора или специального парового котла низких параметров и небольшой производительности. Групповая схема более экономически выгодна, чем автономная.

3 Виброочистка поверхностей нагрева.

Виброочистка и встряхивание – две разновидности одного и того же способа защиты поверхности нагрева. Различаются они частотой и амплитудой колебания обдуваемого змеевика, а так же величиной прилагаемой силы. При виброочистке частота колебаний исчисляется тысячами, а при встряхивании – единицами или десятками периодов в минуту.

Достоинство данного метода в том, что он не требует внесения в газоход постороннего вещества (пара, воздуха, воды), а недостатком является ограниченность области применения (возможно использовать только для очистки эластичных трубных петель).

Возможны две формы вибрации змеевиков: соосная и поперечная. При соосной вибрации перемещения совпадают с плоскостью покоящегося змеевика (например, перемещение вертикальной ширмы вверх и вниз).

Поперечная вибрация заключается в попеременном отклонении змеевика в обе стороны от центрального положения покоя. Этот тип виброочистки получил более широкое распространение.

Рисунок 4. Устройство для вибрационной очистки поверхности нагрева:

1 - вибратор; 2 - тяга; 3 - уплотнение; 4 - поверхность нагрева.

Первый опыт виброочистки был проведён в СССР в 1949 году, частота колебаний была принята порядка 50 Гц. Сначала были опасения ухудшения структуры металла труб в результате виброочистки, однако после 2600 ч работы с виброочисткой, ухудшений свойств металла, по данным ВТИ, не наступило. Аналогичные данные были получены и в ГДР.

В связи с тем, что тяга постоянно должна находиться в газоходе, существует проблема её нагрева. Известно несколько конструкций штанг:

1. Массивная (сплошная) штанга. Прост в изготовлении, дёшев, но может применяться только до 600 °C

2. Полая трубчатая штанга с водяным охлаждением. Может применяться при любых

температурах. Изготовлена по принципу «труба в трубе». Охлаждающая вода 120

°C, в штанге она нагревается до 130…160 °C. Расход охлаждающей воды через одну штангу 1,5 т/ч.

3. Массивная штанга из жаропрочной стали. Массивна, громоздка и имеет высокую стоимость изготовления.

В России преимущественно применяют штанги с водяным охлаждением.

Для прохода тяги через обмуровку служит чугунная закладная втулка овальной формы, при этом большая ось вала установлена вертикально для обеспечения свободного перемещения штанги вниз на 35..40 мм. Вокруг штанги втулку заполняют асбестовой пушонкой, а снаружи прикрывают эластичным рукавом из асботкани.

Механическим приводом виброочистки служат:

Вибратор с электродвигателем;

Пневмоударный инструмент типа отбойного молотка;

Воздушный силовой цилиндр.

Применяют эксцентриковые вибраторы с короткозамкнутыми электродвигателями трехфазного тока мощностью 0,6-0,9 кВт на 288 об/мин. Виброочистку обычно осуществляют с частотой порядка 50 периодов в секунду при амплитуде колебаний от 0,2 до 1 мм на холодном котле и от 0,25 до 0,4 на работающем котле.

4 Дробеочистка “хвостовых” поверхностей нагрева.

Дробеочистка по сравнению с обдувкой обладает двумя важными пре-имуществами: практически неограниченной дальнобойностью дробевого потока и устранением (при регулярной дробеочистке) опасности завала поверхностей нагрева отложениями, удаляемыми с вышерасположенных узлов.

А. П. Погребняк, заведующий лабораторией,
к.т.н. С.И. Воеводин, ведущий научный сотрудник,
В.Л. Кокорев, главный конструктор проекта,
А.Л. Кокорев, ведущий инженер,
ОАО «НПО ЦКТИ», г. Санкт-Петербург

В нынешних экономических условиях, когда большинство предприятий решают вопросы максимального повышения эффективности своего оборудования, в т.ч. и принадлежащих им котельных, с целью снижения себестоимости производимой продукции в условиях постоянно растущих цен на энергоносители, особое внимание уделяется нетрадиционным техническим решениям, позволяющим экономить топливо, повышать эффективность и долговечность работы оборудования.

Одним из основных направлений экономии различных видов жидкого и твердого топлива (мазут, дизтопливо, уголь, торф, сланец, древесные отходы и др.) является повышение эффективности работы паровых и водогрейных котлов, технологических агрегатов, сжигающих эти виды топлива, за счет предотвращения загрязнения их поверхностей нагрева золовыми отложениями.

Длительный опыт эксплуатации паровых и водогрейных котлов, котлов-утилизаторов и других технологических агрегатов, оборудованных традиционными средствами очистки поверхностей нагрева, показали их недостаточную эффективность и надежность, что в значительной мере снижает экономичность работы (уменьшение КПД на 2-3%) и требует больших трудозатрат на производство ручной очистки. Кроме того, эти способы очистки обладают рядом других существенных недостатков, а именно:

Паровая обдувка, наряду со значительными энерго- и трудозатратами, способствует коррозионному и эрозионному износу поверхностей нагрева, особенно при сжигании высокосернистого топлива, что сокращает срок их службы в 1,5-2 раза; наличие влаги способствует затвердеванию отложений на трубах за счет сульфати-зации, следствием чего являются частые остановки котлоагрегатов для ручной очистки;

Дробеочистка является сложным и энергозатратным способом очистки, требующим значительных трудозатрат в процессе его применения и при ремонте используемого оборудования, и не обеспечивающим при этом эффективной и надежной очистки из-за больших потерь дроби, а также застревания дроби в трубной системе устройства очистки и в поверхностях нагрева;

Виброочистка и ударная очистка вызывают механические повреждения очищаемых поверхностей нагрева.

Этих недостатков лишены разработанные в ОАО «НПО ЦКТИ» на основе собственных исследований, системы газоимпульсной очистки (ГИО) с малогабаритными импульсными камерами, которые предназначены для очистки от отложений конвективных поверхностей нагрева промышленных котлоагрегатов (ДКВР, ДЕ, КВ-ГМ, ПТВМ, ГМ, БКЗ и др.), а также котлов коммунальной энергетики малой мощности (от 0,5 МВт и выше). Разработанные системы ГИО обладают различной степенью автоматизации, вплоть до полностью автоматизированных.

Принцип работы системы ГИО заключается в воздействии на отложения, образующиеся на поверхностях нагрева направленных ударных и акустических волн, генерируемых за счет взрывного горения ограниченного объема газовоздушной смеси (0,01-0,1 м3), осуществляемого в импульсной камере, размещаемой вне газохода котла. За счет истечения из импульсной камеры со сверхзвуковой скоростью продуктов сгорания происходит комплексное волновое и термогазодинамическое воздействие на наружные отложения, теплообменные и ограждающие поверхности.

В качестве рабочих компонентов в системе используются: природный газ, топливный или баллонный газ (пропан) и воздух от собственного вентилятора.

Основными конструктивными элементами системы ГИО являются: импульсные камеры, сопловые блоки, коллекторы, технологический блок, блок зажигания и управления (БЗУ), комплекс управления системой (автоматизированный вариант).

Импульсная камера (фото 1) предназначена для организации процесса взрывного горения и представляет собой цилиндрическую емкость диаметром 159-325 мм (в зависимости от характеристик очищаемой поверхности и вида топлива) и высотой не более 1 м. Импульсная камера соединяется с газоходом котла при помощи соплового блока, который предназначен для ввода продуктов взрыва газовоздушной смеси в газоход котла и направления создаваемых ударных волн на поверхность нагрева.

Технологический блок ГИО имеет габариты 250x1300 мм (фото 2) и устанавливается непосредственно около котла и выполняет все технологические функции в соответствии с алгоритмом работы системы очистки. Технологический блок включает в себя вентилятор, узел подготовки и зажигания смеси, газовую линию с арматурой и манометром.

Управление элементами технологического блока осуществляется при помощи БЗУ (фото 3), который соединен кабелем с электросетью и имеет разъемы для соединения с запальником, вентилятором и электромагнитным клапаном. БЗУ задает количество импульсов и интервал между ними.

В автоматизированном варианте ГИО комплекс управления состоит из блока управления и одного или нескольких исполнительных блоков, которые выполняют функции БЗУ. При этом запуск системы в работу осуществляется «от кнопки», а остановка и приведение в исходное состояние всех элементов системы происходит автоматически.

Периодичность очистки - от нескольких раз в сутки для котлов, работающих на твердом топливе (уголь, сланец, торф и т.п.), до одного раза в неделю при работе на природном газе. Продолжительность цикла очистки - 10-15 мин, расход газа (пропана) на цикл очистки - 0,5-2,5 кг.

Работа ГИО не оказывает вредных воздействий на обслуживающий персонал и конструктивные элементы котла.

Генерируемые импульсными камерами ударные волны распространяются во все точки газохода котла, что обеспечивает равномерную очистку поверхностей нагрева. ГИО может использоваться для очистки поверхностей нагрева, работающих в среде как нейтральных, так и агрессивных газов (SO2, HF и др.).

Система ГИО надежна в работе и проста в управлении и обслуживании, в промежутках между ревизиями котлов не требует профилактических ремонтов. Ее можно устанавливать не только на сооружаемых котлах, но и на котлах, находящихся в эксплуатации. Время простоя котла для монтажа ГИО составляет 5-10 сут. и зависит от количества монтируемых импульсных камер.

Применение ГИО кроме экономии электроэнергии за счет улучшения аэродинамики газохода и сокращения затрат за счет исключения ручной очистки, позволяет значительно повысить эффективность работы конвективных поверхностей нагрева котлов (см. таблицу). КПД паровых и водогрейных котлов, работающих на жидком и твердом топливе, за счет применения ГИО повышается на 1,5-2%, что позволяет достичь значения близкого к расчетному.

Применение ГИО на котлах различных типов дает экономический эффект, позволяющий окупать затраты на внедрение только за счет экономии топлива, в срок от полугода до года.

В настоящее время разработана и внедряется также малогабаритная передвижная система ГИО для малых котлов предприятий коммунальной энергетики.

[email protected]

| скачать бесплатно Опыт внедрения газо-импульсной очистки на энерготехнологических котлах и котлах промышленной и коммунальной энергетики , Погребняк А. П., Воеводин С.И., Кокорев В.Л., Кокорев А.Л. ,

Изобретение относится к области теплоэнергетики и может быть использовано для очистки поверхностей нагрева жаротрубных и газотрубных котлов и других теплообменных аппаратов от золовых отложений. Устройство включает камеру сгорания с выхлопными соплами, рассредоточенными вдоль ее продольной оси, патрубки подвода топлива и воздуха, смеситель, соединенный со смесепроводом, часть которого, расположенная внутри камеры сгорания, перфорирована на участках между выхлопными соплами, источник зажигания, блок управления, связанный линией управления с источником зажигания. На газовой камере котла установлены сообщающиеся с ее объемом направляющие ударные штуцера, соединенные посредством волноводов с выхлопными соплами и направленные на загрязненные внутренние поверхности труб котла, выходящие через трубную доску в объем газовой камеры котла, причем блок управления дополнительно соединен линиями управления с электромагнитным клапаном на патрубке подвода топлива и с электромагнитным клапаном на патрубке подвода воздуха. Техническое решение позволяет осуществлять эффективную очистку трубных пучков поверхностей нагрева за счет рационального распределения и доставки энергии ударных волн системой волноводов к ударным штуцерам и точного направления ударных направляющих штуцеров на загрязненные поверхности нагрева. 1 ил.

Рисунки к патенту РФ 2504724

Изобретение относится к области теплоэнергетики, к технике очистки поверхностей нагрева жаротрубных и газотрубных котлов и других теплообменных аппаратов от золовых отложений и может быть использовано в устройствах различных отраслей народного хозяйства.

Известно устройство для очистки поверхностей нагрева, содержащее камеру сгорания с выхлопным соплом, смеситель с патрубками для подвода газа и воздуха, запальную камеру с периодически действующим запальником, пламепровод, соединяющий запальную камеру с камерой сгорания, при этом камера сгорания заглушена с обоих концов, а выхлопное сопло размещено параллельно продольной оси с образованием в камере сгорания двух отсеков, сообщенных с ним (SU 1580962, МПК: F28G 1/16, опубликовано 09.02.1988).

Недостатком известного устройства является невозможность равномерного распределения энергии ударного импульса по трубной доске и по трубам трубного пучка котла, выходящим через трубную доску в газовую камеру котла.

Известно устройство для импульсной очистки осадительных поверхностей электрофильтров, содержащее камеру сгорания, закрытую с обеих сторон, с выхлопными соплами и патрубками подвода топлива и воздуха, смеситель, источник зажигания и смесепровод, часть которого расположена внутри камеры сгорания, при этом выхлопные сопла расположены внутри камеры сгорания и рассредоточены вдоль ее продольной оси, а смесепровод внутри камеры сгорания перфорирован на участках, расположенных между выхлопными соплами (RU № 2027140 МПК: F28G 7/00, опубликован 20.01.1995.

Это известное устройство является наиболее близким в заявляемому и принято за прототип.

Недостатками известного устройства для импульсной очистки поверхностей нагрева является то, что оно не обеспечивает эффективную очистку поверхностей нагрева жаротрубных и газотрубных котлов из-за отсутствия конструктивных элементов для рационального распределения и точного направления ударно-волнового воздействия на внутритрубные отложения в трубных пучках и на трубных досках. В известном устройстве выхлопные сопла однонаправленные, что делает невозможным рациональное распределение ударных импульсов по поверхности нагрева трубного пучка. Известное устройство не автоматизировано, что снижает его технический уровень.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, а также выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил технического решения, характеризующегося признаками, тождественными или эквивалентными предлагаемым.

Определение из перечня выявленных аналогов прототипа, как наиболее близкого технического решения по совокупности признаков, позволило выявить в заявленном устройстве совокупность существенных отличительных признаков по отношению к усматриваемому заявителем техническому результату, изложенную в нижеприведенной формуле изобретения.

Заявляемое техническое решение позволяет осуществлять эффективную очистку трубных пучков поверхностей нагрева и трубных досок жаротрубных и газотрубных котлов за счет рационального распределения и доставки энергии ударных волн системой волноводов к ударным штуцерам и точного направления ударных направляющих штуцеров на загрязненные поверхности нагрева.

Предложено устройство для импульсной очистки поверхностей нагрева жаротрубных и газотрубных котлов, включающее камеру сгорания, закрытую с обеих сторон, с выхлопными соплами, расположенными внутри камеры сгорания и рассредоточенными вдоль ее продольной оси, патрубки подвода топлива и воздуха, смеситель, соединенный со смесепроводом, часть которого, расположенная внутри камеры сгорания, перфорирована на участках между выхлопными соплами, источник зажигания, а также блок управления, связанный линией управления с источником зажигания, при этом на газовой камере котла установлены сообщающиеся с ее объемом направляющие ударные штуцера, соединенные посредством волноводов с выхлопными соплами и направленными на загрязненные внутренние поверхности труб котла, выходящие через трубную доску в объем газовой камеры котла, причем блок управления дополнительно соединен линиями управления с электромагнитным клапаном на патрубке подвода топлива и с электромагнитным клапаном на патрубке подвода воздуха.

Изобретение иллюстрируется чертежом.

Устройство включает камеру сгорания 1, закрытую с обеих сторон, с выхлопными соплами 2, расположенными внутри камеры сгорания 1 и рассредоточенными вдоль ее продольной оси, патрубки подвода топлива 3 и воздуха 4, смеситель 5, соединенный со смесепроводом 6. Часть смесепровода 6, расположенная внутри камеры сгорания 1, перфорирована на участках между выхлопными соплами 2. Источник зажигания 7 соединен со смесепроводом 6. Блок управления 8 связан линией управления с источником зажигания 7. На газовой камере котла 9 установлены сообщающиеся с ее объемом направляющие ударные штуцера 10, соединенные посредством волноводов 11 с выхлопными соплами 2. Ударные штуцера 10 направлены на загрязненные внутренние поверхности труб котла 12, выходящие через трубную доску 13 в объем газовой камеры котла 9. Блок управления 8 дополнительно соединен линиями управления с электромагнитным клапаном 14 на патрубке подвода топлива 3 и с электромагнитным клапаном 15 на патрубке подвода воздуха 4.

Устройство работает следующим образом. После нажатия на блоке управления 8 кнопки «Пуск» открывается электромагнитный клапан 14 на патрубке подвода топлива 3 и электромагнитный клапан 15 на патрубке подвода воздуха 4 к смесителю 5. Топливовоздушная смесь по смесепроводу 6 из смесителя 5 поступает в камеру сгорания 1. После заполнения камеры сгорания 1 топливовоздушной смесью, автоматически подается напряжение на периодически действующий источник зажигания 7, который воспламеняет топливовоздушную смесь и, пламя по смесепроводу 6 поступает в камеру сгорания 1, вызывая в ней взрывное горение смеси. Из камеры сгорания 1 продукты взрывного горения выбрасываются через выхлопные сопла 2 и генерируют ударно-акустические волны, которые по волноводам 11 распределяются по ударным направляющим штуцерам 10 на газовой камере котла 9 и направляются на трубную доску 13 и внутритрубные загрязненные поверхности нагрева котла 12. При этом за счет рационального распределения и доставки энергии ударных волн системы волноводов к ударным штуцерам 10 и точного направления ударных распределительных штуцеров 10 на загрязненные поверхности нагрева 12, достигается эффективная очистка трубной доски 13 и трубного пучка котла от внутритрубных загрязнений. После выполнения заданного программой цикла очистки, из блока управления 8 подаются команды на закрытие электромагнитных клапанов топлива 3 и воздуха 4 и прекращение работы источника зажигания 7.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Устройство для импульсной очистки поверхностей нагрева жаротрубных и газотрубных котлов, включающее камеру сгорания, закрытую с обеих сторон, с выхлопными соплами, расположенными внутри камеры сгорания и рассредоточенными вдоль ее продольной оси, патрубки подвода топлива и воздуха, смеситель, соединенный со смесепроводом, часть которого, расположенная внутри камеры сгорания, перфорирована на участках между выхлопными соплами, источник зажигания, а также блок управления, связанный линией управления с источником зажигания, отличающееся тем, что на газовой камере котла установлены сообщающиеся с ее объемом направляющие ударные штуцера, соединенные посредством волноводов с выхлопными соплами и направленные на загрязненные внутренние поверхности труб котла, выходящие через трубную доску в объем газовой камеры котла, при этом блок управления дополнительно соединен линиями управления с электромагнитным клапаном на патрубке подвода топлива и с электромагнитным клапаном на патрубке подвода воздуха.