Тепловой пункт индивидуальный (ИТП): схема, принцип работы, эксплуатация. Системы горячего водоснабжения жилых, общественных и промышленных зданий

Индивидуальный представляет собой целый комплекс устройств, располагаемый в отдельном помещении, включающий в себя элементы теплового оборудования. Он обеспечивает подключение к тепловой сети этих установок, их трансформацию, управление режимами теплопотребления, работоспособность, распределение по типам потребления теплоносителя и регулирование его параметров.

Тепловой пункт индивидуальный

Тепловая установка, занимающаяся или отдельных его частей, является индивидуальным тепловым пунктом, или сокращенно ИТП. Предназначен он для обеспечения горячим водоснабжением, вентиляцией и теплом жилых домов, объектов жилищно-коммунального хозяйства, а также производственных комплексов.

Для его функционирования потребуется подключение к системе водо- и тепло-, а также электроснабжения, необходимого для активации циркуляционного насосного оборудования.

Малый тепловой пункт индивидуальный может использоваться в доме на одну семью или небольшом строении, подключенном непосредственно к централизованной сети теплоснабжения. Такое оборудование рассчитано на отопление помещений и подогрев воды.

Большой индивидуальный тепловой пункт занимается обслуживанием больших или многоквартирных строений. Мощность его находится в пределах от 50 кВт до 2 МВт.

Основные задачи

Тепловой пункт индивидуальный обеспечивает выполнение следующих задач:

  • Учет расхода тепла и теплоносителя.
  • Защита системы теплоснабжения от аварийного увеличения параметров теплоносителя.
  • Отключение системы теплопотребления.
  • Равномерное распределение теплоносителя по системе теплопотребления.
  • Регулировка и контроль параметров циркулирующей жидкости.
  • Преобразование вида теплоносителя.

Преимущества

  • Высокая экономичность.
  • Многолетняя эксплуатация индивидуального теплового пункта показала, что современное оборудование этого типа, в отличие от других неавтоматизированных процессов, потребляет на 30% меньше
  • Эксплуатационные затраты снижаются примерно на 40-60%.
  • Выбор оптимального режима теплопотребления и точная наладка позволят до 15% сократить потери тепловой энергии.
  • Бесшумная работа.
  • Компактность.
  • Габаритные размеры современных тепловых пунктов напрямую связаны с тепловой нагрузкой. При компактном размещении индивидуальный тепловой пункт с нагрузкой до 2 Гкал/час занимает площадь в 25-30 м 2 .
  • Возможность расположения данного устройства в подвальных малогабаритных помещениях (как в существующих, так и во вновь построенных зданиях).
  • Процесс работы полностью автоматизирован.
  • Для обслуживания этого теплового оборудования не требуется высококвалифицированный персонал.
  • ИТП (индивидуальный тепловой пункт) обеспечивает в помещении комфорт и гарантирует эффективное энергосбережение.
  • Возможность установки режима, ориентируясь на время суток, применения режима выходного и праздничного дня, а также проведения погодной компенсации.
  • Индивидуальное изготовление в зависимости от требований заказчика.

Учет тепловой энергии

Основой энергосберегающих мероприятий является прибор учета. Требуется этот учет для выполнения расчетов за количество потребляемой тепловой энергии между теплоснабжающей компанией и абонентом. Ведь очень часто расчетное потребление значительно больше фактического по причине того, что при расчете нагрузки поставщики тепловой энергии завышают их значения, ссылаясь на дополнительные расходы. Подобных ситуаций позволит избежать установка приборов учета.

Назначение приборов учета

  • Обеспечение между потребителями и поставщиками энергоресурсов справедливых финансовых взаиморасчетов.
  • Документирование параметров системы теплоснабжения, таких как давление, температура и расход теплоносителя.
  • Контроль за рациональным использованием энергосистемы.
  • Контроль за гидравлическим и тепловым режимом работы системы теплопотребления и теплоснабжения.

Классическая схема прибора учета

  • Счетчик тепловой энергии.
  • Манометр.
  • Термометр.
  • Термический преобразователь в обратном и подающем трубопроводе.
  • Первичный преобразователь расхода.
  • Сетчато-магнитный фильтр.

Обслуживание

  • Подключение считывающего устройства и последующее снятие показаний.
  • Анализ ошибок и выяснение причин их появления.
  • Проверка целостности пломб.
  • Анализ результатов.
  • Проверка технологических показателей, а также сравнение показаний термометров на подающем и обратном трубопроводе.
  • Долив масла в гильзы, чистка фильтров, проверка контактов заземления.
  • Удаление загрязнений и пыли.
  • Рекомендации по правильной эксплуатации внутренних сетей теплоснабжения.

Схема теплового пункта

В классическую схему ИТП входят следующие узлы:

  • Ввод тепловой сети.
  • Прибор учета.
  • Подключение системы вентиляции.
  • Подключение отопительной системы.
  • Подключение горячего водоснабжения.
  • Согласование давлений между системами теплопотребления и теплоснабжения.
  • Подпитка подключенных по независимой схеме отопительных и вентиляционных систем.

При разработке проекта теплового пункта обязательными узлами являются:

  • Прибор учета.
  • Согласование давлений.
  • Ввод тепловой сети.

Комплектация другими узлами, а также их количество выбирается в зависимости от проектного решения.

Системы потребления

Стандартная схема индивидуального теплового пункта может иметь следующие системы обеспечения тепловой энергией потребителей:

  • Отопление.
  • Горячее водоснабжение.
  • Отопление и горячее водоснабжение.
  • Отопление, и вентиляция.

ИТП для отопления

ИТП (индивидуальный тепловой пункт) - схема независимая, с установкой пластинчатого теплообменника, который рассчитан на 100% нагрузку. Предусмотрена установка сдвоенного насоса, компенсирующего потери уровня давления. Подпитка отопительной системы предусмотрена от обратного трубопровода тепловых сетей.

Данный тепловой пункт может быть дополнительно укомплектован блоком горячего водоснабжения, прибором учета, а также другими необходимыми блоками и узлами.

ИТП для ГВС

ИТП (индивидуальный тепловой пункт) - схема независимая, параллельная и одноступенчатая. Комплектацией предусмотрены два теплообменника пластинчатого типа, работа каждого из них рассчитана на 50% нагрузки. Предусмотрена также группа насосов, предназначенных для компенсации понижения давления.

Дополнительно тепловой пункт может оснащаться блоком отопительной системы, прибором учета и другими необходимыми блоками и узлами.

ИТП для отопления и ГВС

В данном случае работа индивидуального теплового пункта (ИТП) организована по независимой схеме. Для отопительной системы предусмотрен теплообменник пластинчатый, который рассчитан на 100%-ную нагрузку. Схема горячего водоснабжения - независимая, двухступенчатая, с двумя теплообменниками пластинчатого типа. С целью компенсации снижения уровня давления предусмотрена установка группы насосов.

Подпитка отопительной системы происходит с помощью соответствующего насосного оборудования из обратного трубопровода тепловых сетей. Подпитка горячего водоснабжения выполняется от системы холодного водоснабжения.

Кроме того, ИТП (индивидуальный тепловой пункт) укомплектован прибором учета.

ИТП для отопления, горячего водоснабжения и вентиляции

Подключение тепловой установки выполняется по независимой схеме. Для отопительной и вентиляционной системы используется теплообменник пластинчатый, рассчитанный на 100%-ную нагрузку. Схема горячего водоснабжения - независимая, параллельная, одноступенчатая, с двумя пластинчатыми теплообменниками, рассчитанными на 50% нагрузки каждый. Компенсация понижения уровня давления осуществляется посредством группы насосов.

Подпитка отопительной системы происходит из обратного трубопровода тепловых сетей. Подпитка горячего водоснабжения выполняется из системы холодного водоснабжения.

Дополнительно индивидуальный тепловой пункт в многоквартирном доме может оборудоваться прибором учета.

Принцип работы

Схема теплового пункта напрямую зависит от особенностей источника, снабжающего энергией ИТП, а также от особенностей обслуживаемых им потребителей. Наиболее распространенной для данной тепловой установки является закрытая система горячего водоснабжения с подключением отопительной системы по независимой схеме.

Индивидуальный тепловой пункт принцип работы имеет такой:

  • По подающему трубопроводу теплоноситель поступает в ИТП, отдает тепло подогревателям системы отопления и горячего водоснабжения, а также поступает в вентиляционную систему.
  • Затем теплоноситель направляется в обратный трубопровод и по магистральной сети поступает обратно для повторного использования на теплогенерирующее предприятие.
  • Некоторый объем теплоносителя может расходоваться потребителями. Для восполнения потерь на источнике тепла в ТЭЦ и котельных предусмотрены системы подпитки, которые в качестве источника тепла используют системы водоподготовки данных предприятий.
  • Поступающая в тепловую установку водопроводная вода протекает через насосное оборудование системы холодного водоснабжения. Затем некоторый ее объем доставляется потребителям, другой нагревается в подогревателе горячего водоснабжения первой ступени, после этого направляется в циркуляционный контур горячего водоснабжения.
  • Вода в циркуляционном контуре посредством циркуляционного насосного оборудования для горячего водоснабжения передвигается по кругу от теплового пункта к потребителям и обратно. При этом по мере необходимости потребители отбирают из контура воду.
  • В процессе циркуляции жидкости по контуру она постепенно отдает собственное тепло. Для поддержания на оптимальном уровне температуры теплоносителя его регулярно нагревают во второй ступени подогревателя горячего водоснабжения.
  • Отопительная система также является замкнутым контуром, по которому происходит движение теплоносителя с помощью циркуляционных насосов от теплового пункта к потребителям и обратно.
  • В процессе эксплуатации могут возникать утечки теплоносителя из контура отопительной системы. Восполнением потерь занимается система подпитки ИТП, которая использует первичные тепловые сети в качестве источника тепла.

Допуск в эксплуатацию

Чтобы подготовить индивидуальный тепловой пункт в доме к допуску в эксплуатацию, необходимо представить в Энергонадзор следующий перечень документов:

  • Действующие технические условия на подключение и справку об их выполнении от энергоснабжающей организации.
  • Проектную документацию со всеми необходимыми согласованиями.
  • Акт ответственности сторон за эксплуатацию и разделение балансовой принадлежности, составленный потребителем и представителями энергоснабжающей организации.
  • Акт о готовности к постоянной или временной эксплуатации абонентского ответвления теплового пункта.
  • Паспорт ИТП с краткой характеристикой систем теплоснабжения.
  • Справку о готовности работы прибора учета тепловой энергии.
  • Справку о заключении договора с энергоснабжающей организацией на теплоснабжение.
  • Акт о приемке выполненных работ (с указанием номера лицензии и даты ее выдачи) между потребителем и монтажной организацией.
  • лица за безопасную эксплуатацию и исправное состояние тепловых установок и тепловых сетей.
  • Список оперативных и оперативно-ремонтных ответственных лиц по обслуживанию тепловых сетей и тепловых установок.
  • Копию свидетельства сварщика.
  • Сертификаты на используемые электроды и трубопроводы.
  • Акты на скрытые работы, исполнительную схему теплового пункта с указанием нумерации арматуры, а также схемы трубопроводов и запорной арматуры.
  • Акт на промывку и опрессовку систем (тепловые сети, отопительная система и система горячего водоснабжения).
  • Должностные и технике безопасности.
  • Инструкции по эксплуатации.
  • Акт допуска в эксплуатацию сетей и установок.
  • Журнал учета КИПа, выдачи нарядов-допусков, оперативный, учета выявленных при осмотре установок и сетей дефектов, проверки знаний, а также инструктажей.
  • Наряд из тепловых сетей на подключение.

Меры безопасности и эксплуатация

У обслуживающего тепловой пункт персонала должна быть соответствующая квалификация, также ответственных лиц следует ознакомить с правилами эксплуатации, которые оговорены в Это обязательный принцип индивидуального теплового пункта, допущенного к эксплуатации.

Запрещено запускать в работу насосное оборудование при перекрытой запорной арматуре на вводе и при отсутствии в системе воды.

В процессе эксплуатации необходимо:

  • Контролировать показатели давления на манометрах, установленных на подающем и обратном трубопроводе.
  • Наблюдать за отсутствием постороннего шума, а также не допускать повышенной вибрации.
  • Осуществлять контроль нагрева электрического двигателя.

Не допускается применять чрезмерное усилие в случае ручного управления клапаном, а также при наличии давления в системе нельзя разбирать регуляторы.

Перед запуском теплового пункта необходимо промыть систему теплопотребления и трубопроводы.

В статье мы выясним, как рассчитывается среднесуточная температура при проектировании систем отопления, как зависит от температуры на улице температура теплоносителя на выходе из элеваторного узла и какой может быть температура батарей отопления зимой.

Затронем мы и тему самостоятельной борьбы с холодом в квартире.

Холод зимой — больная тема для многих обитателей городских квартир.

Общая информация

Здесь мы приведем основные положения и выдержки из действующих СНиП.

Температура наружного воздуха

Расчетная температура отопительного периода, которая закладывается в проект систем отопления — это ни много ни мало усредненная температура наиболее холодных пятидневок за восемь самых холодных зим из последних 50 лет.

Такой подход позволяет, с одной стороны, быть готовыми к сильным морозам, которые случаются лишь раз в несколько лет, с другой — не вкладывать в проект излишних средств. В масштабах массовой застройки речь идет о весьма значительных суммах.

Целевая температура в помещении

Стоит сразу оговорить, что на температуру в помещении влияет не только температура теплоносителя в системе отопления.

Параллельно действует несколько факторов:

  • Температура воздуха на улице . Чем она ниже — тем больше утечка тепла через стены, окна и крыши.
  • Наличие или отсутствие ветра . Сильный ветер увеличивает теплопотери зданий, продувая через неуплотненные двери и окна подъезды, подвалы и квартиры.
  • Степень утепления фасада, окон и дверей в помещении . Понятно, что в случае герметично закрывающегося металлопластикового окна с двухкамерным стеклопакетом потери тепла будут куда ниже, чем с рассохшимся деревянным окном и остеклением в две нитки.

Любопытно: сейчас наметилась тенденция именно к строительству многоквартирных домов с максимальной степенью термоизоляции.
В Крыму, где живет автор, новые дома строятся сразу с утеплением фасада минеральной ватой или пенопластом и с герметично закрывающимися дверями подъездов и квартир.

  • И, наконец, собственно температура радиаторов отопления в квартире .

Итак, каковы действующие нормативы температур в помещениях разного назначения?

  • В квартире: угловые комнаты — не ниже 20С, прочие жилые комнаты — не ниже 18С, ванная комната — не ниже 25С.
    Нюанс: при расчетной температуре воздуха ниже -31С для угловой и прочих жилых комнат берутся более высокие значения, +22 и +20С (источник — постановление Правительства РФ от 23.05.2006 «Правила предоставления коммунальных услуг гражданам»).
  • В детском саду: 18-23 градуса в зависимости от назначения помещения для туалетов, спален и игровых комнат; 12 градусов для прогулочных веранд; 30 градусов для помещений бассейнов.
  • В учебных заведениях: от 16С для спален школ-интернатов до +21 в классных помещениях.
  • В театрах, клубах, прочих увеселительных заведениях: 16-20 градусов для зрительного зала и +22С для сцены.
  • Для библиотек (читальных залов и книгохранилищ) норма — 18 градусов.
  • В продовольственных магазинах нормальная зимняя температура 12, а в непродовольственных — 15 градусов.
  • В спортзалах поддерживается температура 15-18 градусов.

  • В больницах поддерживаемая температура зависит от назначения помещения. Скажем, рекомендованная температура после отопластики или родов — +22 градуса, в палатах для недоношенных детей поддерживается +25, а для больных тиреотоксикозом (избыточным выделением гормонов щитовидной железой) — 15С. В хирургических палатах норма — +26С.

Температурный график

Какой должна быть температура воды в трубах отопления?

Она определяется четырьмя факторами:

  1. Температурой воздуха на улице.
  2. Типом системы отопления. Для однотрубной системы максимальная температура воды в системе отопления согласно действующим нормам — 105 градусов, для двухтрубной — 95. Максимальный перепад температур между подачей и обраткой — соответственно 105/70 и 95/70С.
  3. Направлением подачи воды в радиаторы. Для домов верхнего розлива (с подачей на чердаке) и нижнего (с попарной закольцовкой стояков и расположением обеих ниток в подвале) температуры различаются на 2 — 3 градуса.
  4. Типом отопительных приборов в доме. Радиаторы и имеют разную теплоотдачу; соответственно, для обеспечения одинаковой температуры в помещении температурный режим отопления должен различаться.

Итак, какой должна быть температура отопления — воды в трубах подачи и обратки — при разных уличных температурах?

Приведем лишь небольшую часть температурной таблицы для расчетной температуры окружающего воздуха -40 градусов.

  • При нуле градусов температура подающего трубопровода для радиаторов с разной разводкой — 40-45С, обратного — 35-38. Для конвекторов 41-49 подача и 36-40 обратка.
  • При -20 для радиаторов подача и обратка должны иметь температуру 67-77/53-55С. Для конвекторов 68-79/55-57.
  • При -40С на улице для всех отопительных приборов температура достигает максимально допустимой: 95/105 в зависимости от типа системы отопления на подаче и 70С на обратном трубопроводе.

Полезные дополнения

Для понимания принципа работы системы отопления многоквартирного дома, разделения зон ответственности, нужно знание еще нескольких фактов.

Температура теплотрассы на выходе с ТЭЦ и температура отопления в системе вашего дома — это абсолютно разные вещи. При тех же -40 ТЭЦ или котельная будет выдавать около 140 градусов на подаче. Вода не испаряется только благодаря давлению.

В элеваторном узле вашего дома часть воды из обратного трубопровода, возвращающаяся из системы отопления, подмешивается к подаче. Сопло впрыскивает струю горячей воды с большим давлением в так называемый элеватор и вовлекает массы остывшей воды в повторную циркуляцию.

Зачем это нужно?

Чтобы обеспечить:

  1. Разумную температуру смеси . Напомним: температура отопления в квартире не может превышать 95-105 градусов.

Внимание: для детских садов действует другая норма температуры: не выше 37С. Низкую температуру отопительных приборов приходится компенсировать большой площадью теплообмена.
Именно поэтому в детских садах стены украшены радиаторами столь большой длины.

  1. Большой объем воды, вовлеченной в циркуляцию . Если убрать сопло и пустить воду с подачи напрямую — температура обратки будет мало отличаться от подачи, что резко увеличит потери тепла на трассе и нарушит работу ТЭЦ.

Если заглушить подсос воды с обратки — циркуляция станет настолько медленной, что обратный трубопровод зимой может просто перемерзнуть.

Зоны ответственности разделены так:

  • За температуру воды, нагнетаемой в теплотрассы, отвечает производитель тепла — местная ТЭЦ или котельная;
  • За транспортировку теплоносителя с минимальными потерями — организация, обслуживающая тепловые сети (КТС — коммунальные тепловые сети).

  • За обслуживание и настройку элеваторного узла — ЖЭУ . При этом, однако, диаметр сопла элеватора — то, от чего зависит температура радиаторов — согласовывается с КТС.

Если у вас дома холодно и все отопительные приборы — те, что установлены строителями, вы урегулируете этот вопрос с жилищниками. Рекомендованные санитарными нормами температуры они обязаны обеспечить.

Если вами предпринята какая-либо модификация системы отопления, например, — тем самым вы берете на себя всю полноту ответственности за температуру в вашем жилье.

Как бороться с холодом

Будем, однако, реалистами: чаще всего решать проблему холода в квартире приходится самим, своими руками. Не всегда жилищная организация может обеспечить вас теплом в разумные сроки, да и санитарные нормы удовлетворят не каждого: хочется, чтобы дома было тепло.

Как будет выглядеть инструкция по борьбе с холодом в многоквартирном доме?

Перемычки перед радиаторами

Перед отопительными приборами в большинстве квартир стоят перемычки, которые призваны обеспечить циркуляцию воды в стояке при любом состоянии радиатора. Долгое время они снабжались трехходовыми кранами, затем стали ставиться без какой-либо запорной арматуры.

Перемычка в любом случае уменьшает циркуляцию теплоносителя через отопительный прибор. В том случае, когда ее диаметр равен диаметру подводки, эффект особенно выражен.

Простейший способ сделать свою квартиру теплее — врезать в саму перемычку и подводку между ней и радиатором дроссели.

С их помощью возможна удобная регулировка температуры батарей отопления: при перекрытой перемычке и открытом полностью дросселе на радиатор температура максимальна, стоит открыть перемычку и прикрыть второй дроссель — и жара в комнате сходит на нет.

Большое достоинство такой доработки — минимальная стоимость решения. Цена дросселя не превышает 250 рублей; сгоны, муфты и контргайки и вовсе стоят копейки.

Важно: если ведущий к радиатору дроссель хоть немного прикрыт, дроссель на перемычке открывается полностью. Иначе регулировка температуры отопления выльется в остывшие у соседей батареи и конвектора.

Теплые полы

Даже если радиатор в комнате висит на возвратном стояке с температурой около 40 градусов, с помощью модификации отопительной системы можно сделать комнату теплой.

Выход — низкотемпературные системы отопления.

В городской квартире трудно применить из-за ограниченности высоты помещения: подъем уровня пола на 15-20 сантиметров будет означать вовсе уж низкие потолки.

Куда более реальный вариант — теплый пол. За счет куда большей площади теплоотдачи и более рационального распределения тепла в объеме комнаты низкотемпературное отопление прогреет комнату лучше, чем раскаленный радиатор.

Как выглядит реализация?

  1. На перемычку и подводку так же, как в предыдущем случае, ставятся дроссели.
  2. Отвод от стояка на отопительный прибор подключается к металлопластиковой трубе, которая укладывается в стяжку на полу.

Чтобы коммуникации не портили внешний вид комнаты, они убираются в короб. Как вариант — врезка в стояк переносится ближе к уровню пола.

Заключение

Дополнительную информацию о работе централизованных систем отопления вы сможете найти в видео в конце статьи. Теплых зим!

Предписаниями СанПиНа строго установлено, какой должна быть температура горячей воды в квартире – норматив 2019-го по сравнению с предыдущим годом остался неизменным. Это значит, что все граждане России имеют право пользоваться горячей водой определённой температуры (за которую, к слову, платят) и жаловаться, когда сталкиваются с нарушениями предписаний СанПиНа. И дело вовсе не в том, что вместе с водой гражданин лишается базовых удобств – если вода, текущая из-под крана, слишком холодна или слишком горяча, здоровье человека, который ей пользуется, находится под угрозой.

Какие нормы установлены?

Какой температуры должна быть горячая вода? Это напрямую зависит от вида системы водоснабжения:

    Если система открытая – минимум 60 градусов по Цельсию .

    В закрытой системе – минимум 50 градусов по Цельсию .

Согласно нормативам 2019, температура горячей воды в квартире не должна превышать 75 градусов. Этот лимит от вида системы водоснабжения не зависит.

Температурный режим крайне важно соблюдать по ряду причин.

    Если температура слишком низкая, жидкость загрязняется возбудителями инфекционных заболеваний и бактериями. При установленном минимальном температурном пороге вредоносные бактерии обречены на гибель.

    Слишком горячая вода может привести к образованию повреждений кожи (ожогов). Строго говоря, даже при 55 градусах есть риск получения ожога – поэтому гражданам, подключённым к открытым системам водоснабжения, рекомендуется обязательно «подмешивать» к горячей холодную воду.

    Превышение температурного порога приводит к повреждениям пластиковых элементов водопровода – а ведь в большинстве современных квартир водопровод в основном состоит из пластика. Кто должен платить за ремонт в этом случае - большой вопрос. Всё то время, пока гражданин будет искать виноватого и доказывать право на компенсацию, ему придётся сидеть немытым.

Падение температуры до 59 градусов или повышение её до 76-и в открытой системе водоснабжения уже считается нарушением Правил предоставления коммунальных услуг (есть и такие). Однако незначительные отклонения от температурных пределов эти Правила всё же допускают.

    Разрешено понижать температуру днём (с 5 утра до полуночи) на 3° по Цельсию – то есть до 57°.

    По ночам (с полуночи до 5 утра) допустимо понижать минимальный порог на 5° - то есть до 55°.

Подача горячей воды может быть приостановлена совсем в 2-х случаях: если на насосной станции или магистрали подачи случилась авария либо если проводятся плановые профилактические работы. В случае профилактики граждан не вправе лишать водоснабжения более, чем на 4 часа.

Как измерить температуру?

Разумеется, с голословными обвинениями в том, что «из-под крана идёт чуть тёпленькая», в управляющую компанию идти бесполезно – ей доказательства подавай. Поэтому гражданин, который считает себя пострадавшим из-за нарушений предписаний СанПиНА и желает отстоять справедливость, должен прежде всего узнать, как замерить температуру горячей воды в квартире. Процедура эта несложная, краткосрочная и не требующая хитроумных подручных средств.

Термометр со шкалой в 100 градусов – вот чем измеряют температуру горячей воды в кране. Гражданину для замера необходимо подготовить этот бытовой прибор, затем строго придерживаться алгоритма действий, который, по мнению управляющих компаний, неизменно приводит к точным результатам.

    Открыть кран и дать воде сойти в течение примерно 3 минут. Так избавляются от застоявшейся воды, температура которой традиционно ниже.

    Под струю поставить стакан и держать его, чтобы жидкость переливалась через края. Просто набрать стакан из-под крана нельзя – за то время, пока вы донесёте его до стола, где положили термометр, вода остынет, и достоверность замера окажется сомнительной

    Опустить термометр в ёмкость ближе к центру.

    Дождаться, когда градусы на приборе перестанут расти, и зафиксировать результат.

Если термометр показал температуру ниже установленного СанПиНом минимального уровня, это значит, что управляющей компании пора задать форменную взбучку.

Куда обращаться?

Что же делать, если горячая вода низкой температуры? Жаловаться на это гражданину нужно в Жилищно-Коммунальное Хозяйство (ЖКХ).

Недостаточно высокая температура – лишь одно из оснований для жалобы. ЖКХ также следует беспокоить, если вода имеет нехарактерный цвет (запах, вкус) или отсутствует совсем.

Лично посещать Хозяйство нет нужды – можно и позвонить. Диспетчер прежде всего проверит, не вызвано ли снижение температуры горячей воды в кране поломкой на магистрали или профилактическими работами. Если виной всему ремонт на станции, диспетчер сообщит гражданину приблизительные сроки, когда нормальное водоснабжение будет восстановлено. Если же уважительных причин нарушения предписаний СанПиНа нет, диспетчер зафиксирует обращение гражданина и пообещает, что реакции долго ждать не придётся.

Дабы быть уверенным, что его обращение не окажется проигнорированным, гражданину нужно записать номер заявки, время звонка в ЖКХ и ФИО сотрудника, с которым он общался. Сотрудник, столкнувшийся с такой дотошностью, точно проследит за тем, чтобы принятую им заявку рассмотрели – потому как будет чувствовать ответственность за выполнение данных обещаний.

Гражданину нужно ждать визита эксперта – если верить Постановлению Правительства №354, эксперт должен появиться на пороге не более, чем через 2 часа после обращения гражданина с жалобой. Эксперт замерит температуру воды из-под крана самостоятельно (самому гражданину на слово, разумеется, никто не поверит). Затем сотрудник ЖКХ составит акт, в котором опишет, действительно ли нарушение имело место быть, как и когда проводился замер. Потребитель коммунальных услуг получит один из экземпляров акта на руки – второй экземпляр эксперт унесёт с собой.

Имея при себе акт, свидетельствующий о нарушении норм температуры горячей воды в многоквартирном доме, гражданин вправе потребовать у управляющей компании перерасчёт платы за ГВС.

За горячую воду, температура которой опускается ниже 40° по Цельсию, потребитель услуг платит как за холодную.

Постановление №354 гласит, что период, в течение которого гражданин имеет право на перерасчёт, завершается тогда, когда домой к гражданину придут люди из управляющей компании и произведут итоговую проверку, которая подтвердит: температура горячей воды достаточно высока. В случае отказа в перерасчёте гражданину следует обращаться с жалобой на действия управляющей компании в Роспотребнадзор или в мировой суд.

Содержание раздела

Системы горячего водоснабжения – это комплекс технических и технологических устройств, предназначенных для приготовления, транспорта и распределения горячей воды питьевого качества от источника до водоразборного прибора потребителя. Состав оборудования систем горячего водоснабжения зависит от степени централизации систем. Системы горячего водоснабжения в зависимости от степени централизации приготовления горячей воды подразделяются на централизованные, групповые, местные и индивидуальные. Наибольшая централизация достигается в системах горячего водоснабжения с непосредственным водоразбором горячей воды из систем теплоснабжения (открытых системах теплоснабжения). В этом случае горячая вода и теплоноситель систем теплоснабжения имеют идентичные свойства. При этом теплоноситель должен полностью соответствовать требованиям . Горячая вода приготавливается в технологических устройствах для подготовки воды, использующейся в качестве теплоносителя в системах теплоснабжения. Эти установки, как правило, устанавливаются на источнике выработки теплоты. Системы водоподготовки в котельных и на ТЭЦ подобно рассмотрены в . Отличительной особенностью открытых систем теплоснабжения является наличие в системе аккумулятора горячей воды, предназначенного для выравнивания отпуска теплоты в систему, неравномерность которой объясняется особенность суточной неравномерности потребления воды.

В закрытых системах теплоснабжения приготовление горячей воды для каждой группы потребителей осуществляется на центральных тепловых пунктах (ЦТП), где объединяются: поток теплоты от источника системы теплоснабжения и вода питьевого качества, поступающая из систем хозяйственно-питьевого водоснабжения. В жилых зданиях с индивидуальным источником теплоты (местные системы), горячая вода приготовляется в местных установках горячего водоснабжения. Индивидуальные системы горячего водоснабжения формируются на базе технических устройств, позволяющих подготовить горячую воду необходимой кондиции непосредственно у потребителя. Но и в этом случае для приготовления горячей воды необходимы теплота и вода питьевого качества.

Рис.2.4.1, 2.4.2

Горячее водоснабжение имеет весьма неравномерный характер потребления воды (а следовательно, и теплоты) как в течение суток, так и в течение недели, причем для каждого типа потребителя суточное и недельное потребление будет иметь некоторые особенности. Так, например, потребление горячей воды для жилых зданий имеет два суточных максимума (см. рис. 2.4.1), а потребление воды в школах – только один (см. рис. 2.4.2). Наибольшая нагрузка горячего водоснабжения в жилых районах имеет место, как правило, в субботу, а в промышленных – в четверг. При этом чем больше индивидуальных разнородных потребителей присоединены к системе теплоснабжения, тем меньше неравномерность ее нагрузки.

Рис. 2.4.1. Суточный график горячего водоснабжения жилого района:

а – сутки среднего водопотребления; б – сутки максимального водопотребления

Таким образом, методы проектирования систем горячего водоснабжения различаются в зависимости от степени их централизации. Объектами проектирования могут выступать как системы в целом, так и отдельные ее элементы.

Для проектных задач, связанных с определением мощности вновь строящихся источников теплоты для централизованных систем и выбором оборудования для них, определение расчетных количеств теплоты выполняется по ее средненедельному, среднесуточному и среднечасовому расходам.

Рис. 2.4.2. Характеристики суточной и недельной неравномерности потребления горячей воды в школах

Средненедельный расход теплоты (средненедельная тепловая нагрузка), кВт, бытового горячего водоснабжения отдельных жилых, общественных зданий и промышленных зданий или группы однотипных зданий в отопительный период определяется по

Q г.з ср.с =1,2M(a+b)(t г -t х.з)c p ср /n c , (2.84)

где M – расчетное количество потребителей; a – норма расхода воды на горячее водоснабжение при температуре t г = 55 0 С на одного человека в сутки, кг/(сут×чел), проживающего в здании с горячим водоснабжением. Она принимается в зависимости от степени комфортности зданий в соответствии с ; b – расход горячей воды с температурой t г = 55 0 С, кг (л) для общественных зданий, отнесенный к одному жителю района; при отсутствии более точных данных рекомендуется принимать b = 25 кг в сутки на одного человека, кг/(сут×чел); c p ср =4,19 кДж/(кг×К) – удельная теплоемкость воды при ее средней температуре t ср = (t г -t х.з)/2;t х.з – температура холодной воды в отопительный период (при отсутствии данных принимается равной 5 0 С); n c – расчетная длительность подачи теплоты на горячее водоснабжение, с/сут; при круглосуточной подаче n c =24×3600=86400 с; коэффициент 1,2 учитывает выстывание горячей воды в абонентских системах горячего водоснабжения.

Средненедельный расход теплоты в межотопительный период определяется по формуле, аналогичной (2.84) с той лишь разницей, что вместо температуры холодной воды в зимний период учитывается температура холодной воды в летний период t х.л (см. формулу (2.85)) При отсутствии данных t х.л принимается равной +15 0 С.

Нормы расхода воды (a и b) на горячее водоснабжение для различных типов потребителей приведены в табл.2.14.

Температура горячей воды в местах водоразбора должна поддерживаться в следующих пределах:

  • в открытых системах теплоснабжения и в системах местного горячего водоснабжения не ниже 55 и не выше 80 0 С;
  • в закрытых системах теплоснабжения не ниже 50 и не выше 75 0 С.

Таблица 2.14.

Нормы расхода горячей воды

Потребитель Единица измерения Расход
средненедельный a г.в ср1 , л/сут в сутки наибольшего водопотребления a г.в ср2 , л/сут максимально часовой, a г.в max , кг/ч
Жилые дома квартирного типа, оборудованные:

умывальниками, мойками и душами

сидячими ваннами и душами

ваннами длиной от 1,5 до 1,7 м. и душами

1 житель 85 100 7,9
Жилые дома квартирного типа при высоте зданий более 12 этажей и повышенном благоустройстве 1 житель 115 130 10,9
Общежития:

с общими душевыми

с душевыми во всех комнатах

с общими кухнями и блоками душевых на этажах

1 житель 50 60 6,3
Гостиницы, пансионаты и мотели с общими ваннами и душами 1 житель 70 70 8,2
Гостиницы, пансионаты с душами во всех номерах 1 житель 140 140 12
Гостиницы с ваннами в отдельных номерах:

в 25% от общего числа номеров

то же в 75 %

во всех номерах

1 житель 100

150 180

100

150 180

10,4
Больницы:

с общими ванными и душами

с санитарными узлами, приближенными к палатам

инфекционные

1 койка 75 75 5,4
Санатории и дома отдыха:

с ваннами при всех жилых комнатах

с душевыми при всех жилых комнатах

1 койка 120 120 4,9
Поликлиники и амбулатории 1 больной в смену 5,2 6 1,2
Прачечные:

механизированные

немеханизированные

1 кг сухого белья 25 15 25 15 25 15
Административные здания 1 работающий 5 7 2
Учебные заведения (в том числе высшие и специальные с душевыми при гимнастических залах и буфетами) 6 8 1,2
Профессионально-технические училища 1 учащийся и 1 преподаватель 8 9 1,4
Предприятия общественного питания:

для приготовления пищи, реализуемой в обеденном зале;

то же продаваемой на дом.

1 блюдо 12,7 12,7 12,7
Магазины:

продовольственные;

промтоварные.

1 работающий в смену 65 5 65 7 9,6 2
Стадионы и спортзалы:

для зрителей

для физкультурников

для спортсменов

1 место 1 физкульт. 1 спортсмен 1 30 1 30 60 0,1 2,5 5
Бани:

для мытья в мыльной с споласкиванием в душе;

то же с приемом оздоровительных процедур;

душевая кабина;

ванная кабина.

посещение - - - - 120

240 360

120
Душевые в бытовых помещениях промышленных предприятий 1 душевая сетка в смену - 270 270

Нормы расхода горячей воды, приведенные в табл. 2.15, относятся к температуре t г =55 0 С. При использовании для бытового горячего водоснабжения воды с другой температурой t гi норма ее расхода определяется из условия подачи абонентам нормированного количества воды по формуле

где K сут max – коэффициент суточной неравномерности расхода теплоты, учитывающий неравномерность расхода горячей воды и теплоты на ее приготовление по дням недели. При отсутствии опытных данных рекомендуется принимать для жилых и общественных зданий K сут max =1,2, для промышленных зданий и предприятий K сут max =1.

Расчетный (максимально-часовой) расход теплоты на бытовое горячее водоснабжение, кВт, равен среднечасовому расходу теплоты за сутки наибольшего водопотребления, умноженному на коэффициент часовой неравномерности, учитывающий неравномерность потребления горячей воды и теплоты на ее приготовление по часам суток:

(2.88)

где K ч max – коэффициент часовой неравномерности расхода теплоты за сутки наибольшего водопотребления. При ориентировочных расчетах можно принимать для городов и населенных пунктов K ч max =1,7÷2,0, для промышленных зданий и предприятий K ч max =2,5÷3,0.

Соотношения для определения расходов теплоты средних за неделю, сутки наибольшего водопотребления и максимально часовые расходы используются для оценки мощности источника системы теплоснабжения, выбора аккумулятора горячей воды в системе централизованного теплоснабжения, определения надбавки температуры теплоносителя к температурному графику отпуска теплоты от источника системы теплоснабжения, выбора производительности насосов для циркуляции воды по системе теплоснабжения.

Для проектных задач, связанных с определением тепловой мощности вновь строящихся центральных (ЦТП), обслуживающих группу зданий и индивидуальных (ИТП) тепловых пунктов, обслуживающих одно здание; расчетов гидравлических режимов во внутридомовых системах горячего водоснабжения и выбором оборудования для них, используется максимальной (расчетный) расход воды (теплоносителя) через каждый участок системы горячего водоснабжения.

В основе расчета максимального (расчетного) расхода воды лежит вероятностный метод определения одновременности действия водоразборных приборов, составляющих систему горячего водоснабжения. При этом предполагается, что события, характеризующие одновременность действия приборов, есть ординарные события и, следовательно, подчиняющиеся закону распределения Пуассона. С учетом этого замечания алгоритм расчета расходов воды через каждый участок внутридомовых водопроводов состоит в следующем :

1. Вся система горячего водоснабжения разбивается на участки, характеризующиеся присоединенными к нему помещениями, в которых установлены водоразборные приборы.

2. Для каждого из этих помещений определяется количество типов установленных в нем водоразборных приборов (A пом) и общее количество водоразборных приборов всех типов (N пом). Из них выделяется те водоразборные приборы, которые присоединены к системе горячего водоснабжения (N г.в.i пом).

3. Для каждого ш-го типа водоразборных приборов из табл. 2.15 находят расчетные секундные расходы горячей воды (g o.i =g г.в.i p) единичным прибором, кг/c.

Таблица 2.15.

Расходы горячей воды через водоразборные приборы

Наименование водоразборного прибора Секундный расход горячей воды, g г.в.i кг/c Часовой расход горячей воды, g х.в.i ч, кг/ч Свободный напор у водоразборного прибора, H в.п.i , м
Умывальник со смесителем 0,09 40 2
Раковина (мойка) с водоразборным краном и смесителем 0,09 60 2
Мойка (для предприятий общественного питания) со смесителем 0,2 280 2
Ванна со смесителем (общим для ванны, умывальника и душа) 0,18 200 3
Душевая кабина с мелким душевым поддоном и смесителем 0,09 60 3
Душ в групповой установке со смесителем 0,14 230 3
Биде со смесителем 0,05 54 5

4. Определяется количество человек (M г.в.i пом), использующих водоразборные приборы, установленные в данных помещениях (жильцов в квартире, работников в цехе, детей в детском саду и т.д.).

5. Для приборов каждого типа, используемых одними и теми же потребителями (например, умывальник, используемый всеми жильцами квартиры) вычисляются вероятности действия каждого из них в час максимального водопотребления:

P г.в.i =a г.в max *M пом /(g г.в.i р *N г.в.i пом *3600), (2.89)

где i – обозначение (индекс) типа рассматриваемого водоразборного прибора; a г.в max – нормы расхода горячей воды одним человеком, находящимся в рассматриваемом помещении, за час максимального водопотребления, кг/(ч×потребитель).

Величина a г.в max , определенная на основе статистической обработки наблюдений за характером водопотребления в жилых, общественных промышленных и других зданиях, приведена в табл. 2.14.

6. Все разнотипные водоразборные приборы, установленные в любом рассматриваемом помещении, где известно общее количество типов этих приборов, равное A пом, условно заменяются равным количеством однотипных эквивалентных приборов, для которых вычисляются расходы горячей воды через каждый из них:

Если через рассматриваемый участок системы горячего водоснабжения вода подается в водоразборные приборы, установленные в j помещениях одинакового типа (например, несколько квартир разных этажей), то для участка используются суммарные значения вероятности действия приборов в системе горячего водоснабжения (P г.в.уч э.п), рассчитанной по (2.91), с той лишь разницей, что вместо M пом принимается ΣM пом, а вместо N пом принимается ΣN пом. Если же через участок проходит горячая вода, поступающая в j-е помещения различающихся типов (например, через один участок системы горячего водоснабжения проходит горячая вода, поступающая в квартиры и магазин), то для каждого из типов помещений рассчитываются свои значения вероятности действия эквивалентных водоразборных приборов (P г.в.маг э.п и P г.в.кв э.п), причем для их расчета используется (2.91), а затем находятся усредненное значение вероятности для участка:

9. По рассчитанным величинам произведений из рис. 2.4.3 и 2.4.4 выбираются значения коэффициентов α г.в и затем определяются максимальный (расчетный) расход горячей воды через рассматриваемый участок внутренней системы горячего водоснабжения, который также называют максимальным секундным расходом (кг/c):

g г.в.уч p =5g г.в э.п α г.в, (2.94)

Алгоритм повторяется для следующего участка системы горячего водоснабжения. Обычно определение расчетных расходов воды начинают с участков от наиболее удаленных потребителей и постепенно приближаются к месту ввода, т.е. к местному или групповому тепловому пункту. Таким образом осуществляется свертка информации о расчетном расходе воды в системе горячего водоснабжения, и последний расчет секундного расхода будет осуществлен для выходного патрубка системы горячего водоснабжения на ЦТП или ИТП. Эта величина обозначается как G г.в p (кг/c).

Рис.2.4.3. Значения коэффициента α г.в при P г.в >0,1 и N г.в <200 шт. Рис.2.4.4. Значения коэффициента α г.в при P г.в и любом N г.в (а), а также при P г.в >0,1 и N г.в >200 шт.

На рис. 2.4.5 представлены наиболее распространенные схемы присоединения горячего водоснабжения в рамках ЦТП или ИПТ к системам теплоснабжения.

Одновременно с секундным расходом G г.в p воды определяют средний часовой расход воды в системе горячего водоснабжения, кг/ч:

Количество теплоты, (кДж/ч), необходимое на подогрев всех этих расходов воды определяется как разница ее энтальпий до и после подогрева, т.е.:

Q г.в макс.ч =Q г.в p =G г.в макс.ч (h г.в -h х.в)=G г.в макс.ч (c г.в t г.в -c х.в t х.в), (2.97)

где c г.в и c х.в – удельная теплоемкость горячей и холодной воды соответственно, кДж/(кг× 0 С); t г.в и t х.в – температура горячей и холодной воды 0 С; h г.в и h х.в – энтальпии воды после и до подогрева, кДж/кг.

Файл:C:\Users\Samsung\AppData\Local\Temp\msohtmlclip1\01\clip image002.jpg
1 водоподогреватель горячего водоснабжения
2
3
4
5
6 регулятор подачи теплоты на отопление, горячее водоснабжение и ограничения максимального расхода теплоносителя из тепловой сети
7 Обратный клапан
8 Корректирующий подмешивающий насос
9 тепловычислитель
10 измерители температуры
11
12 сигнал ограничения максимального расхода воды из тепловой сети
13
а. Одноступенчатая система присоединения водоподогревателей горячего водоснабжения с автоматическим регулированием расхода теплоты на отопление и зависимым присоединением систем отопления
Файл:C:\Users\Samsung\AppData\Local\Temp\msohtmlclip1\01\clip image004.jpg
1 водоподогреватель горячего водоснабжения первой и второй ступени
2 повысительно-циркуляционный и циркуляционный насосы горячего водоснабжения
3 регулирующий клапан подачи теплоносителя
4 регулятор перепада давлений (прямого действия)
5 измеритель расхода холодной воды, поступающей в систему горячего водоснабжения
6 регулятор подачи теплоты на горячее водоснабжение
7 обратный клапан
8 корректирующий подмешивающий насос
9 тепловычислитель
10 измерители температуры
11 измеритель расхода теплоносителя
12 регулятор ограничения максимального расхода воды на ввод
13 измерители давления теплоносителя
14 измерители температуры теплоносителя на вводе в систему отопления
б. Двухступенчатая схема присоединения водоподогревателей горячего водоснабжения для жилых и общественных зданий и жилых микрорайонов и зависимым присоединением систем отопления
в. Схема присоединения горячего водоснабжения с непосредственным водоразбором теплоносителя
Рис. 2.4.5. Схемы присоединения абонентов к тепловым сетям
Рис. 2.4.6. Общий вид горизонтального секционного кожухотрубного водоподогревателя с опорами –турбулизаторами

Водоподогреватели системы горячего водоснабжения. Для подогрева воды в закрытых системах горячего водоснабжения применяются водоподогреватели, где в качестве греющей среды используется теплоноситель из тепловой сети, а нагревается вода питьевого качества из системы холодного водоснабжения. Могут использоваться два типа водоподогревателей: горизонтальные кожухотрубные или пластинчатые. Пластинчатые теплообменники находят все более широкое применение в системах горячего водоснабжения, в то время как использование кожухотрубных теплообменников не запрещается в . В качестве кожухотрубных секционных водоподогревателей в рекомендовано применять водо-водяные подогреватели по ГОСТ 27590 , состоящие из секций кожухотрубного типа с блоком опорных перегородок для теплоносителя давлением 1,6 МПа и температурой до 150 0 С (рис. 2.4.6), причем теплоноситель движется в межтрубном пространстве, а нагреваемая вода в трубках.

В качестве пластинчатых применялись водоподогреватели по ГОСТ 15518, однако они не предназначались специально для работы в системах теплоснабжения. Они громоздки и менее эффективны по сравнению с конструкциями таких фирм, как Альфа-Лаваль, СВЕП (см. рис. 2.4.7) и др.

Рис. 2.4.7. Общий вид пластинчатого водоподогревателя

Для выбора типоразмера водоподогревателя необходимо оценить его поверхность нагрева. Ее расчет выполняется при температуре теплоносителя в подающем трубопроводе тепловой сети, соответствующей точке излома графика температур теплоносителя (см. пункт 2.6), или при минимальной температуре теплоносителя, если излом графика температур отсутствует:

где Δt б и Δt м – соответственно большая и меньшая разности температур между греющей и нагреваемой средой на входе или на выходе из водоподогревателя.

В частном случае, при одноступенчатой схеме подогрева горячей воды

где τ 01 изл – температура теплоносителя в подающем трубопроводе тепловой сети в точке излома графика температуры теплоносителя, 0 С; τ г р – то же после водоподогревателя горячего водоснабжения, подключенного к тепловой сети по одноступенчатой схеме, 0 С; t х – температура воды, поступающей из системы хозяйственно-питьевого водоснабжения в отопительный период, 0 С; t г – температура воды, поступающей в систему горячего водоснабжения потребителей на выходе из водоподогревателя при одноступенчатой схеме включения, 0 С.

Если в системе горячего водоснабжения установлен бак-аккумулятор горячей воды, то Q г.в р =Q г.в ср. Если тепловые потери по трубопроводам горячего водоснабжения существенны, то Q г.в р =Q г.в р *(1+k mn , где k mn – относительные потери теплоты трубопроводами горячего водоснабжения.

После определения величины поверхности водоподогревателя выполняется выбор его типоразмера по таблицам их технических характеристик (см. табл. 2.16.)

Таблица 2.16.

Технические характеристики водоподогревателей по ГОСТ 27590

Поверхность нагрева одной секции, []м 2 , при длине, м Тепловая произодительность одной секции, кВт, длиной, м Наружный диаметр корпуса секции, []мм Число трубок в секции, [], шт Площадь сечения межтрубного пространства, м 2 Площадь сечения трубок, м 2
Гладких труб Профилированных труб
2 4 2 4 2 4
0,37 0,75 8 18 10 23 57 4 0,00116 0,00062
0,65 1,32 12 25 15 35 76 7 0,00233 0,00108
0,93 1,88 18 40 20 50 89 10 0,00327 0,00154
1,79 3,58 40 85 50 110 114 19 0,005 0,00293
3,49 6,98 70 145 90 195 168 37 0,0122 0,00570
5,75 11,51 114 235 150 315 219 61 0,02139 0,00939
10,28 20,56 235 475 315 635 273 109 0,03077 0,01679

После выбора теплообменника осуществляется его поверочный тепловой и гидравлический расчеты. Выбор размера теплообменника может быть другим, если не выполняются условия по одному из ограничений теплового или гидравлического расчета (например, потери давления в теплообменнике превышают допустимые значения).

В табл. 2.17 приведены технические характеристики пластинчатых теплообменников.

Таблица 2.17.

Технические характеристики пластинчатых теплообменников

фирмы «Альфа-Лаваль» для теплоснабжения

Показатель Единицы измерения Неразборные паянные Разборные с резиновыми прокладками
СВ-51 СВ-76 СВ-300 М3-XFG M6-MFG M10-BFG M15-BFG8
Поверхность нагрева пластины м 2 0,05 0,1 0,3 0,032 0,14 0,24 0,62
Габариты пластины мм 50×520 92×617 365×990 140×400 247×747 460×981 650×1885
Минимальная толщина пластины мм 0,4 0,4 0,4 0,5 0,5 0,5 0,5
Масса пластины кг 0,17 0,44 1,26 0,24 0,8 1,35 2,95
Объем воды в канале л 0,047 0,125 0,65 0,09 0,43 1,0 1,55
Максимальное число пластин в установке шт 60 150 200 95 250 275 700
Рабочее давление МПа 3,0 3,0 2,5 1,6 1,6 1,6 1,6
Максимальная температура 0 С 225 225 225 130 160 150 150
Габариты установки мм
ширина 103 192 466 180 320 470 650
высота 520 617 1263 480 920 981 1885
длина 286 497 739 500 1430 2310 3270
Диаметр патрубков мм 24 50 65/100 43 60 100 140
Стандартное число пластин шт 10,20,30, 40,50,60, 80 20,30,40, 50,60, 70, 80,90, 100, 110,120130, 140,150
Масса установки, при числе пластин

минимальном

кг 5,2 15,8 - 38 146 307 1089
максимальном 15,4 73,0 309 59 330 645 3090
Максимальный расход жидкости м 3 /ч 8,1 39 60/140 10 54 180 288
Потери давления при максимальном расходе кПа 150 150 150 150 150 150 150
Коэффициент теплопередачи Вт/ (м 2 × 0 C) 7700 7890 7545 6615 5950 5935 6810
Тепловая мощность при стандартных условиях кВт 515 2480 8940 290 3360 11480 18360

Балансировочные вентили. Для настройки простых систем горячего водоснабжения используются балансировочные вентили, функции которых состоят в том, чтобы поддерживать давление на входе в систему в установленных проектных пределах и, в случае необходимости, уменьшать или увеличивать его. Балансировочные вентили, как показано на рис. 2.4.8, снабжены патрубками для подключения портативных измерителей расхода и давления, что позволяет осуществлять балансировку системы по результатам сопоставления расчетных и измеряемых величин.

Файл:C:\Users\Samsung\AppData\Local\Temp\msohtmlclip1\01\clip image007.gif Рис. 2.4.8. Общие виды балансировочных вентилей

Фильтры. Эксплуатация металлических трубопроводов систем горячего водоснабжения сопровождается образованием различного рода коррозионных отложений на их поверхности, что, в свою очередь, приводит к загрязнению горячей воды и нарушает стандарт ее качества. Для предотвращения попадания дисперсных частиц в водоразборные приборы, а через них к потребителям, устанавливаются фильтры. В последнее время системы горячего водоснабжения монтируются с установкой фильтров, подобных приведенным на рис. 2.4.9.

Рис. 2.4.9. Общий вид фильтров для систем горячего водоснабжения

В системах горячего водоснабжения до последнего времени рекомендовалось устанавливать только грязевики – устройства расширительного типа, которые предназначались для установки на входе в тепловой пункт и служили для защиты внутридомовой системы от попадания в нее дисперсных твердых примесей из тепловой сети. Практика показала, что, несмотря на незначительное гидравлическое сопротивление, грязевики не выполняли требуемых функций и поэтому в практике проектирования систем горячего водоснабжения, несмотря на повышенное, по сравнению с грязевиками, потери давления, все чаще используются самоочищающиеся сетчатые фильтры.

Специальные схемы горячего водоснабжения для высотных зданий. В отечественной практике проектирования систем горячего водоснабжения для зданий более 16 этажей принято разделять систему на зоны по вертикали. Каждая из зон такой системы представляет собой самостоятельную систему со своими водонагревательными установками и насосами. При строительстве высотных зданий в Москве в 50-е годы каждая зона оборудовалась также и своим баком-аккумулятором. В дальнейшем, проектирование осуществлялось при условии использования постоянно работающих насосов верхней зоны (рис. 2.4.10).

1 - ввод
2 - Повысительный насос верхней зоны
3 - Повысительный насос нижней зоны
4 - Первая ступень подогревателя горячего водоснабжения нижней зоны
5 - Вторая ступень подогревателя горячего водоснабжения нижней зоны
6 - Первая ступень подогревателя горячего водоснабжения верхней зоны
7 - Вторая ступень подогревателя горячего водоснабжения верхней зоны
8 - Циркуляционный насос верхней зоны
9 - Циркуляционный насос нижней зоны
10 - Водоразборные стояки верхней зоны
11 - Водоразборные стояки нижней зоны
Рис. 2.4.10. Двухзонная система горячего водоснабжения