Зачем нужны микроэлементы? Микроэлементы для растений

МИКРОЭЛЕМЕНТЫ

Существенное значение в питании растений, формировании урожая и его качества имеют бор, марганец, молибден, медь, цинк, кобальт, йод. Содержание большинства этих элементов в растениях колеблется от тысячных до стотысячных долей процента. Поэтому они получили название микроэлементов.

Микроэлементы принимают участие во многих физиологических и биохимических процессах у растений. Они - обязательная составная часть многих ферментов, витаминов, ростовых веществ, играющих роль биологических ускорителей и регуляторов сложнейших биохимических процессов. Если ферменты - катализаторы, то микроэлементы можно назвать катализаторами катализаторов. Микробиологические процессы также протекают при участии энзимов, в состав которых входят микроэлементы.

Растениям микроэлементы необходимы в ничтожно малых количествах. Однако недостаток их, как и избыток, нарушает деятельность ферментативного аппарата; а следовательно, и обмен веществ у растений. При недостатке микроэлементов растения заболевают: сахарная свекла, например, гнилью сердечка, лен - бактериозом, злаковые культуры на торфянистых и осушенных болотах - пусто-зернистостью и т.д.

Микроэлементы ускоряют развитие растений, процессы оплодотворения и плодообразования, синтез и передвижение углеводов, белковый и жировой обмен веществ и т.д. Поэтому необходимо внимательно изучать потребность растений в каждом микроэлементе и оптимально ее удовлетворять. Следует помнить, что с усилением химизации земледелия значительно повышаются урожаи, а следовательно, и вынос микроэлементов из почвы (табл. 4.17).

Потребность в микроэлементах в значительной мере удовлетворяется при внесении навоза, а также некоторых минеральных удобрений, особенно сырых калийных солей, фосфоритной муки, томасшлака, золы и др.

Значительное содержание бора, марганца, меди, цинка и кобальта в суперфосфате, по-видимому, связано с содержанием их в исходном фосфатном сырье (табл. 4.18).

4.17. Вынос микроэлементов с урожаями культур, г/га

Культура

Урожай,

ц/га

Си

Мп

Мо

Пшеница зерно

0,10

солома

0,54

Ячмень зерно

0,42

солома

0,35

Клевер (сено, 2 укоса)

7,00

Картофель (клубни)

0,74

Листовая капуста (весь урожай)

4,32

В навозе отмечается высокое содержание всех микроэлементов. Следует отметить, что количество микроэлементов, поступающее с обычными дозами минеральных удобрений, намного меньше того, которое требуется для пополнения их почвенных запасов (табл. 4.18).

4.18. Содержание микроэлементов в минеральных и органических удобрениях,

мг/кг

Удобрение

Си

Мп

Со

Аммиачная селитра

следы

следы

следы

следы

Мочевина

Суперфосфат

из апатита (Невский завод)

12,5

1,18

142,0

0,27

из фосфорита Каратау

31,2

10,6

двойной гранулированный (Волжский завод)

2,15

127,5

0,44

Фосфоритная мука (Кингисеппское месторождение)

2,10

22,5

9,94

1,44

Хлористый калий (Соликамск)

1,70

15,3

следы

Калийная соль

0,91

42,2

0,29

1,33

Нитрофоска (Московский завод)

1,47

15,0

0,20

Навоз

8,00

868,0

6,00

Торф низинный

10,2

326,0

Торф верховой

43,0

В минеральных удобрениях 70-75% валового содержания микроэлементов находится в подвижной форме, т.е. усвояемой для растений. Подвижность микроэлементов в навозе значительно меньше, чем в минеральных удобрениях, и составляет не более 25%. Однако однократное за ротацию внесение навоза в дозе 40 т/га полностью компенсирует вынос меди, марганца, молибдена четырьмя или пятью обычными культурами и почти полностью восполняет вынос цинка.

4.19. Содержание микроэлементов в почве и растениях, мг/кг сухого вещества

Микроэлементы

Почва

Полевые культуры

Бор

1,5-50,0

0-1,0

Медь

1,5-30,0

7,0-20,0

Кобальт

0,4-4,0

0,2-0,4

Молибден

0,2-7,5

0,2-0,8

4.20. Содержание усвояемых форм микроэлементов в почвах, мг/кг

Почва

В (Н 2 0)

Си (1 н. НС1)

Zn (1 н. КС1)

Мп (0,1 н. H 2 S0 4)

Мо (окса- лат)

Со (1 н. HN0 3)

Дерново-

подзолистая

Чернозем

Серозем

Каштановая

Бурая

0,08-0,38

0,38-1,58

0,22-0,62

0,30-0,90

0,38-1,95

0,05-5,0

4.5- 10,0

2.5- 10,0

8.0- 14,0

6.0- 12,0

0,12-20,00

0,10-0,25

0,09-0,12

0,06-0,14

0,03-0,20

50,0-150

1,0-75

1.5- 125

1.5- 75

1.5- 75

0,04-0,97

0,02-0,33

0,03-0,15

0,09-0,62

0,06-0,12

0,12-3,0

1,1-2,2 0,9-1,5 1,1-6,0 0,57-2,25

4.21. Валовое содержание микроэлементов в почвообразующих породах, мг/кг

Породы

Си

Мп

Мо

Со

Глины

Покровные

суглинки

Пески

140-150

18-22

10-20

25-40 9-26 3,2-8,0

620-800

600-650

70-200

1-20 2,9-3,2 до 0,8

8-52 11,8-14 2,9-4,2

до 54 30-49 8,2-28

Бор играет важную роль в опылении и оплодотворении цветков растений. Недостаток его приводит к большому количеству не- оплодотворенных цветков, которые опадают, что в свою очередь резко снижает семенную продуктивность растений. Бор стимулирует образование клубеньков на корнях бобовых растений. При недостатке его снижается фиксация азота атмосферы этими растениями. Борное голодание растений отрицательно влияет на углеводный и белковый

обмен в растениях, сахар и крахмал накапливаются в листьях, отток их в корнеплоды и другие места отложения задерживается. Не­достаток бора приводит к нарушению анатомического строения растений: наблюдаются задержка в развитии меристемы и дегенера­ция камбия (цв. ил. 12-13, 32).

Бор не может реутилизироваться, так как он не поступает из старых органов растения в молодые. Признаки борного голодания появляются прежде всего на молодых частях растений. Симптомы борного голодания для отдельных сельскохозяйственных растений следующие: сахарная свекла заболевает гнилью сердечка, у льна отмирает точка роста вследствие поражения его бактериозом, а у картофеля отмечается повышенная заболеваемость клубней паршой.

При известковании резко снижается содержание усвояемого бора в почве. По-видимому, он переходит в слаборастворимые со­единения с известью. Кроме того, при известковании усиливается микробиологическая деятельность в почве, что приводит к иммобили­зации усвояемых форм бора, так как микроорганизмы используют его на построение органического вещества своего тела. Нельзя забывать, что кальций, внесенный с известью, является антагонистом бора и задерживает поступление его в растение. Этим объясняется высокое положительное действие борных удобрений на произвесткованных кислых почвах. Эффективность их возрастает на фоне высоких доз минеральных удобрений, так как с высокими урожаями выносится и больше бора из почвы.

Растения содержат различное количество бора. В зерне хлеб­ных злаков его содержится от 4,7 (кукуруза) до 8,1 (пшеница) мг/кг сухого вещества, в бобовых - от 9,5 (чечевица) до 29 (соя), в семенах льна - 14,2, гречихи-18,7, в клубнях картофеля - до 13, в корнях свеклы - до 32 мг/кг. Вынос бора с хорошими урожаями сельско­хозяйственных культур составляет 30-270 г/га. Больше его выносят технические и бобовые культуры, меньше - злаковые (табл. 4.22).

4.22. Содержание бора в урожаях важнейших сельскохозяйственных

культур

Культура

Культура

Зерновые

21-42

Картофель

70-140

Кукуруза (зеленая масса)

32-67

Кормовые

корнеплоды

84-168

Клевер (сено)

41-82

Сахарная свекла

136-272

Лен

47-94

Почвы нашей страны содержат разное количество бора (табл. 4.23). Меньше всего его в почве тундры. Недостаточно обеспечены бором дерново-подзолистые и лесостепные почвы, а также красно­земы и торфяные почвы. Больше всего валового и усвояемого бора содержится в солонцах и солончаках. Для решения вопроса о необходимости внесения борных удобрений важно знать количество в почве усвояемого бора, которое может значительно изменяться в пределах землепользования одного и того же хозяйства. Наиболее доступный для растений - водорастворимый бор.

4.23. Содержание бора в почвах, мг/кг почвы

Почва

Вало­

вой

Усвоя­

емый

Почва

Вало­

вой

Усвоя­

емый

Почва тундры

Дерново-подзолистая

Лесостепная

Черноземы

Каштановая

4.5- 5

4.6- 8

4.7- 12

4.8- 15

следы -0,1 0,04-0,6 0,3-0,9 0,5-1,8 0,6-1,5

Серозем

Засоленная

Краснозем

Торфяная

20-80

20-120

1-10

0,4^,8 0,9-40,0 0,2-0,5 0,05-2,5

Борные удобрения эффективны в том случае, когда в почве содержится меньше 0,3 мг водорастворимого бора на 1 кг почвы. Почвы Нечерноземной зоны по содержанию в них усвояемых форм бора делятся на пять групп (мг/кг почвы):

< 0,1 - очень бедная,

0 , 1 - 0,2 - бедная,

0 ,3-0,5 - среднеобеспеченная,

2.5- 67-1,0 - богатая,

8.0- 1,0 - очень богатая.

Эффективность борных удобрений чаще всего проявляется на вновь осваиваемых дерново-глеевых слабозаболоченных и торфяных почвах. От применения бора заметно повышается урожай корней и семян кормовых корнеплодов, семян клевера и люцерны. Положи­тельно влияют борные удобрения на урожай гороха и кормовых бобов. Из зерновых культур наибольшей отзывчивостью отличается кукуруза. Положительный эффект от бора на пшенице, ржи, овсе, просе и ячмене наблюдается лишь на бедных этим микроэлементом известкованных верховых торфяниках.

Марганец принимает участие в окислительно-восстанови­тельных процессах: фотосинтезе, дыхании, в усвоении молекулярного и нитратного азота, а также в образовании хлорофилла. Все эти процессы протекают под влиянием различных ферментов, а марга­нец - составная часть ферментов и их активаторов.

Роль марганца в различных физиолого-биохимических процессах изучал П.А. Власюк. Он установил, что при аммиачной форме азота в почве марганец действует как окислитель, при нитратной -как восстановитель. Марганец способствует образованию аскорбиновой кислоты и других витаминов, накоплению сахаров в корнях сахарной свеклы, увеличению содержания белков в зерне пшеницы и кукурузы.

При недостатке марганца в почве растения заболевают серой пятнистостью, которая может вызвать гибель растений, а при менее остром недостатке этого элемента резко снижается урожай сельскохозяйственных культур (цв. ил. 17-20). Типичные признаки недостатка марганца прежде всего проявляются на овсе: на старых листьях появляются желтые и желто-серые пятна и полосы (отсюда и название болезни - серая пятнистость). В опытах с внесением марганца под злаковые травы, клевер, люцерну на бедной этим элементом болотной почве получены прибавки урожая от 5 до 20%. При недостатке марганца угнетается рост корней.

Марганец в растениях содержится в больших количествах, чем другие микроэлементы: от нескольких миллиграммов до нескольких сотен миллиграммов на 1 кг сухого вещества. Вынос марганца с урожаями различных сельскохозяйственных культур составляет 0,5-

4,5 кг/га.

Валовое содержание марганца в почве выражается значительными величинами. По данным А.П. Виноградова, в пахотном слое различных почв содержится следующее количество марганца (в %): в дерново-подзолистых - 0,06-0,09, лесостепных - 0,06-0,20, черноземе - 0,08-0,09, каштановых - 0,10-0,28, в красноземах - 0,05-0,08, сероземах - 0,08-0,29. В почве марганец бывает двух-, трех- и четырехвалентным. В растения поступает только двухвалентная форма, находящаяся в почве или в обменном состоянии в почвенном поглощающем комплексе, или в почвенном растворе.

Окисленная форма марганца недоступна растениям, однако она при определенных условиях способна восстанавливаться до двухвалентной и поглощаться растениями. Например, при плохой аэрации почвы окисленная форма марганца анаэробными микроорганизмами почвы восстанавливается до двухвалентной формы. Поэтому в сильно уплотненных, плохо аэрируемых почвах всегда марганца больше, чем на рыхлых легких почвах. Рыхление почвы и другие приемы, усиливающие ее аэрацию, способствуют уменьшению количества в ней подвижного марганца. Содержание усвояемого марганца увеличивается после увлажнения почвы. Иногда появляется необходимость в приемах, снижающих содержание в почве подвижного
марганца. Потребность в марганце обычно возникает при недостаточном увлажнении, в засушливые годы и на легких почвах.

На усвоение марганца растениями в значительной мере влияет реакция почвы. Обычно недостаток его обнаруживается при pH 5,8 и больше. Марганцевая недостаточность наблюдается чаще всего на карбонатных почвах. На кислых же переувлажненных почвах часто наблюдается избыток подвижного марганца, который резко снижает урожай сельскохозяйственных культур. При избытке подвижного марганца в растениях нарушается углеводный, белковый и фосфатный обмен веществ, нарушаются процессы закладки генеративных органов, оплодотворения и налива зерна. Особенно вреден избыток марганца в почве для озимых культур, клевера и люцерны.

Избыток подвижных форм устраняется известкованием кислых почв, внесением навоза, фосфорных удобрений, в том числе суперфосфата в рядки или лунки. Эффективен также комплекс агротехнических приемов, направленных на создание хорошей аэрации почвы и уменьшение ее переувлажнения. Необходимость применения марганцевых удобрений может возникнуть при избыточном внесении извести.

Известкование бедных марганцем почв может привести к недостаточности его для растений, при сильном же подкислении создается высокая концентрация марганца, что отрицательно действует на растения. Поэтому рекомендуется поддерживать pH почвы на возможно более высоком уровне.

Кислотность почвы может способствовать подвижности и доступности марганца, вплоть до явлений марганцевого отравления. Лучшее средство против кислотности - хорошее известкование почвы, нейтрализующее избыток марганца.

< 0,1 - очень бедная,

0,1-10 - бедная,

11-50 - среднеобеспеченная,

51-100 - богатая,

> 100 - очень богатая.

Это разделение почвы ориентировочное и нуждается в проверке путем закладки полевых опытов.

Роль молибдена в жизни растений довольно разнообразна. Он активизирует процессы связывания атмосферного азота клубеньновыми бактериями, живущими на корнях бобовых растений, оказывает положительное влияние на жизнедеятельность свободно-живущих азотфиксирующих микроорганизмов, способствует синтезу и обмену белковых веществ в растениях, восстановлению нитратного азота. Он входит в состав фермента нитратредуктазы, восстанавливающего нитраты до аммония, без чего невозможен синтез белковых веществ.

Я.В. Пейве все биохимические процессы в растениях с участием молибдена подразделяет на 3 группы.

1. Действие молибдена на процессы восстановления нитратов, нитритов и гидроксиламида до аммиака и биосинтез аминокислот.

2. Участие молибдена в биохимических процессах, связанных с фиксацией молекулярного азота клубеньковыми бактериями в симбиозе с бобовыми культурами и свободноживущими почвенными микроорганизмами.

3. Влияние молибдена на биосинтез нуклеиновых кислот и белков.

Все эти процессы взаимосвязаны. Так, процесс восстановления нитратов связан с биосинтезом аминокислот и белков. Молекулярный азот, который восстанавливается до аммиака, также используется на построение белков и других азотсодержащих соединений у микроорганизмов и высших растений. При недостатке молибдена в растениях образуется меньше белков, накапливаются нитраты, нарушается обмен азотистых веществ. Молибден участвует в окислительно-вос-становительных процессах, углеводном обмене, синтезе витаминов и хлорофилла. Недостаток его в почве приводит к замедлению образования хлорофилла, резкому снижению содержания аскорбиновой кислоты.

Симптомы молибденового голодания наиболее четко проявляются на крестоцветных, особенно цветной капусте, и бобовых растениях (цв. ил. 14). Листья растений капусты сначала становятся пятнистыми, края листьев заворачиваются и завядают. При остром недостатке молибдена молодые центральные листья закручиваются в спираль. Листовая пластинка не развивается в ширину, так что внутренние листья состоят почти из листовых жилок. У бобовых вследствие ослабленной фиксации атмосферного азота проявляются признаки азотного голодания, урожай растений при этом резко снижается.

Молибдена в сухом веществе содержится очень мало (0,1-1,3 мг/кг). Больше его содержится в бобовых растениях. В различных растениях содержится следующее количество молибдена (в мг/кг сухого вещества): в корнях сахарной свеклы - 0,16, в листьях - 0,60, в сене красного клевера - 0,91, в зеленой массе желтого люпина - 1,12, в зерне пшеницы и овса - 0,16-0,19.

Если молибдена в кормах больше 10 мг/кг сухих веществ, животные часто страдают от так называемого молибденозиса. Токсическое действие молибдена на растения иногда проявляется на щелочных почвах, богатых подвижными его формами. На кислых дерново-подзолистых и светло-серых лесостепных почвах чаще всего отмечается недостаток молибдена, так как при повышенном содержании в почве подвижного алюминия, железа и марганца он переходит в неусвояемое состояние. На таких почвах нужно вносить молибден, особенно под бобовые культуры (горох, кормовые бобы, вику, клевер, люцерну, люпин). Хорошо отзываются на внесение молибдена также салат, цветная капуста и другие овощные культуры. Несколько меньшей отзывчивостью отличаются технические культуры: хлопчатник, лен, сахарная свекла. Зерновые хлеба слабо реагируют на внесение молибдена.

От внесения молибдена получены следующие прибавки урожая (в ц/га): вико-овсяной смеси (зеленая масса) - 44,7, люпина синего (зеленая масса) - 65,6, подсолнечника (зеленая масса) - 96,3, кормовой капусты - 81,3, помидоров - 75,0, кабачков - 79,2, свеклы кормовой - 57,7, турнепса - 43,2, яровой пшеницы - 1,1, гречихи -

3,2. Молибден не только повышает урожай сельскохозяйственных культур, но и улучшает качество продукции: увеличивается содержание белка, углеводов, аскорбиновой кислоты и каротина.

Наиболее богаты молибденом черноземные почвы, бедны -засоленные, каштановые и сероземы. Обычно в почвах тяжелого гранулометрического состава молибдена больше, чем в песчаных и супесчаных. По содержанию валового молибдена в почве не всегда можно определить обеспеченность растений этим элементом, так как для них важно наличие достаточного количества усвояемой формы молибдена, которая составляет 5-20% от валового содержания. Наиболее бедны подвижными формами молибдена дерново-под-золистые и лесостепные почвы, красноземы, наиболее богаты -черноземы, каштановые и сероземы.

Недостаток молибдена чаще всего наблюдается на дерново-подзолистых и светло-серых лесостепных почвах. Доступность его зависит от реакции среды: подкисление почвы понижает доступность молибдена растениям, подщелачивание - повышает. Внесение кислых

и физиологически кислых минеральных удобрений без известкования на этих почвах снижает доступность молибдена растениям.

4.24. Содержание молибдена в различных почвах, мг/кг почвы

Почва

Валовый (по Н.С. Ав­донину)

Почва

Подвижный (по Г.А. Се- левцевой)

Дерново-подзолистая

Дерново-подзолистая

песчаная

0,05

Болотная

супесчаная

0,14

Лесостепная

суглинистая

0,25

Чернозем

Лесостепная

0,32

Каштановая

Чернозем мощный

0,46

Засоленная

0,95

Т емно-каштановая

0,42

Серозем

Каштановая

0,45

Краснозем

Серозем типичный

0,50

Горная

Краснозем Торф верховой

0,21

0,30

До настоящего времени пока еще не разработаны точные показатели обеспеченности молибденом растений для всех почвенно­климатических районов нашей страны по содержанию его усвояемых форм в почве. Исследование этого вопроса представляет большое научное и практическое значение.

Дерново-подзолистые почвы по содержанию в них подвижного молибдена (в оксалатной вытяжке, мг/кг почвы) Я.В. Пейве делит на следующие группы:

4.5- 0,05 - очень бедная,

2.5- 05-0,15 - бедная,

8.0- 2-0,25 - среднеобеспеченная,

6.0- 3-0,5 - богатая,

1.5- 0,5 - очень богатая.

Эти показатели ориентировочны и зависят от биологических особенностей растений, свойств почв и других факторов.

Потребность в молибдене, как и в других микроэлементах, возрастает при высоких урожаях сельскохозяйственных культур на фоне хорошей агротехники и применения высоких доз минеральных удобрений.

Медь необходима для жизни растений в небольших количест­вах. Однако без меди погибают даже всходы. Она участвует в процессах окисления, входит в состав окислительных ферментов, например полифенолоксидазы, усиливает интенсивность дыхатель­ных процессов, что сказывается на характере углеводного и белкового обмена веществ, придает хлорофиллу большую устойчивость, усиливает фотосинтетическую деятельность зеленых растений. Без меди затрудняется синтез белка. В листьях бобовых содержится медьсодержащий белок - пластоцианин. Он входит в состав хлоропластов

И, как полагают, необходим для фотосинтеза. О большой роли меди в процессах фотосинтеза свидетельствует тот факт, что почти 100% ее содержится в пластидах. Важную роль она играет в водном балансе растений. При недостатке меди растения теряют тургор, листья становятся вялыми, поникшими (цв. ил. 15).

Симптом медной недостаточности проявляется прежде всего у злаковых культур. Листья растений на концах становятся белыми и скручиваются, растения кустятся, но дают мало колосьев. В зависимости от степени недостаточности меди колосья или метелки частично или совсем бывают пустыми. Урожай зерна бывает небольшим, зерна - щуплыми, озерненность колоса - неполная. Следовательно, недостаток меди сильнее всего влияет на формирование генеративных органов. Болезнь растений, вызываемую недостаточностью меди, называют белоколосицей, или «белой чумой». Иногда ее называют «болезнью вновь освоенных торфяных почв», так как чаще всего растения испытывают недостаток этого элемента при освоении заболоченных и торфяных почв. Не все растения одинаково чувствительны к недостатку меди. Например, ячмень, яровая и озимая пшеница более чувствительны, чем озимая рожь.

По данным М.В. Каталымова, содержание меди колеблется от

1,5 до 8,1 мг/кг сухого вещества. Вынос меди с урожаем пшеницы составляет (в г/га) 7,3, овса - 15, фасоли - 14,2, проса - 21, свеклы кормовой - 45,4, свеклы сахарной - 52,5, люпина желтого - 126, картофеля - 169,4.

Валовое содержание меди в почвах колеблется от 1 до 100 мг/кг. Наиболее богаты медью красноземы и желтоземы, а самые бедные - торфяники. Однако по валовому содержанию этого элемента в почве нельзя судить о степени обеспеченности им. Из всех форм соединений меди в почве доступными для растений являются водорастворимая (ее менее 1 % от валового содержания) и поглощенная поверхностью коллоидов почвы. При вхождении меди в комплексные органические соединения подвижность ее резко снижается. Часть меди входит в кристаллическую решетку минералов. Усвояемые формы меди определяют па содержанию ее в вытяжке 0,5 н. азотной или 1 н. соляной кислоты. По содержанию подвижной меди в почвах определяют степень ее обеспеченности этим элементом и необходимость внесения медных удобрений.

Данные по обеспеченности почв медью, по Я.В. Пейве, приведены в табл. 4.25. Эти показатели ориентировочны и должны

уточняться путем закладки полевых опытов по определению эф­фективности медных удобрений в зависимости от содержания усвояемой меди в почве.

4.25. Обеспеченность почвы медью, мг/кг почвы

Почва

Высокая

Средняя

Низкая

Очень

низкая

Дерново-глеевая, торфяно-глеевая, дерново-сильноподзолистая, песчаная

2,5-3,5

1,0-2,5

0,5-1,0

Дерново-карбонатная суглинистая

2,0-3,0

Торфянистая (низинные, переходные и вересковые болота)

3,0-5,0

1,0-3,0

Дерново-подзолистая суглинистая

2,0-3,0

1,0-2,0

Цинк участвует во многих физиолого-биохимических процес­сах растений. Главным образом он является катализатором и акти­ватором многих процессов. Цинк окисляется в ферменте карбо- ангидразе, расщепляющей угольную кислоту на углекислый газ и воду, активирует каталазу, пероксидазу, липазу, протеазу и инвертазу. Он принимает участие в белковом, липоидном, углеводном, фосфор­ном обмене веществ, в биосинтезе витаминов (аскорбиновой кислоты и тиамина) и ростовых веществ - ауксинов. Цинк улучшает водо­удерживающую способность растений, повышает количество прочно связанной воды.

Недостаток цинка приводит к нарушению обмена веществ у растений. Происходит распад белков под действием фермента рибо- нуклеазы, деятельность которого подавляется при достаточном содержании этого микроэлемента в растении. Цинковое голодание нарушает также углеводный обмен у растений: задерживается образование сахарозы и крахмала, больше накапливается редуци­рующих сахаров. При нарушении фосфорного обмена в растениях больше накапливается минерального фосфора и уменьшается количество фосфорорганических соединений. При резком недостатке цинка нарушается процесс образования хлорофилла, в результате чего проявляется пятнистый хлороз, позже пятна приобретают красновато­бронзовую окраску (цв. ил. 16).

Одним из признаков недостатка этого микроэлемента является образование на концах ветвей плодовых деревьев побегов с укороченными междоузлиями и мелкими листьями. Эта болезнь получила название розеточности. При этом ослабляется закладка плодовых почек, плоды бывают уродливые и мелкие. На однолетних культурах недостаток цинка обнаруживается очень редко. Наиболее чувствительны к его недостатку плодовые деревья, бобы, кукуруза, соя, фасоль, хмель и лен, менее - картофель, томаты, лук, люцерна,

просо, свекла и красный клевер; совсем не реагируют овес, пшеница, горох, спаржа, горчица и морковь.

В растениях содержится мало цинка - 15-22 мг/кг сухого вещества. При большом количестве его в почве содержание в рас­тениях может достигать сотых долей процента. Вынос цинка с урожаем характеризуется следующими величинами (в кг/га): сахар­ной свеклы - 1,2-2,1, картофеля - 1,6, горчицы - 1-1,5, капусты и тимофеевки - 0,058-0,076.

Обычно цинковое голодание растений, особенно овощных, плодовых, кукурузы, обнаруживается на карбонатных почвах, богатых известью, где подвижных форм цинка мало.

Цинк, как и медь, фиксируется поглощающим комплексом почвы и закрепляется в форме органических комплексных соеди­нений. С увеличением pH доступность цинка уменьшается. Поэтому недостаток цинка чаще всего проявляется на песчаных карбонатных почвах и богатых кальцием болотных почвах. На усвояемость цинка отрицательно влияют и фосфаты почвы, которые могут образовывать с ним труднорастворимые соединения.

Валовое содержание цинка в различных почвах страны не­одинаково (табл. 4.26). Количество подвижного цинка в почвах (эту форму его извлекают из почвы 0,1 н. хлористым калием) также подвержено значительным колебаниям. Снижение подвижности цинка на карбонатных почвах объясняется связыванием его известью в нерастворимые цинкаты кальция. Кроме того, кальций задерживает поступление цинка в растения, так как эти катионы являются антагонистами. Подкисление почвы обычно сопровождается увеличе­нием содержания в почве подвижного цинка.

4.26. Содержание цинка в почве, мг/кг почвы

Почва

Почва

Тундровая

Дерново-подзолистая

Лесостепная

53-76

20-67

28-65

Чернозем

Каштановая

Серозем

Краснозем

24-90

26-63

46-73

По данным Я.В. Пейве, почвы по обеспеченности их подвиж­ным цинком делятся на следующие группы (мг/кг почвы):

4.5- 0,2 - очень бедная,

2.5- 3-1 ,0 - бедная,

8.0- 3 ,0 - среднеобеспеченная,

6.0- 5,0 - богатая,

>5,1 - очень богатая.

Эта группировка почв по содержанию цинка ориентировочная и должна уточняться в конкретных почвенно-климатических условиях путем закладки полевых опытов.

Кобальт необходим не только растениям, но и животным. Он входит в состав витамина В12, при недостатке которого нарушается обмен веществ - ослабляется образование гемоглобина, белков, нуклеиновых кислот, и животные заболевают акобальтозом, сухоткой, авитаминозом.

Роль кобальта в питании растений мало изучена. Известно, например, что небольшое количество этого микроэлемента требуется бобовым культурам для усиления работы клубеньковых бактерий. Однако потребность в кобальте для фиксации молекулярного азота во много раз меньше, чем в молибдене. Витамин В12 находят в клубеньках бобовых растений. Кобальт входит в состав ферментов кобамида, коэнзима и амутазы. Однако о соединениях кобальта в растениях мало известно (например, в растениях содержится кобальто-протеин).

Кобальта в растениях немного (0,2-0,6 мг/кг сухого вещества). Чтобы животные не испытывали недостатка в нем, кормовые культуры должны содержать 0,7 мг этого микроэлемента на 1 кг корма.

Оптимальная для растений доза кобальта в питательном растворе 0,06 мг/л. Среднее содержание кобальта в почвах составляет 110_3% (Власюк, 1969). Поступление этого элемента в растения усиливается с подкислением реакции среды, т.е. аналогично другим микроэлементам (кроме молибдена).

Йод также представляет интерес с точки зрения недостатка его для животных, так как он стимулирует деятельность гормона тироксина. Убедительных опытных данных о необходимости его для растений пока нет. Однако установлено благоприятное действие йода для разных культур при концентрациях его от 0,025 до 0,02 мг/л. В водных и песчаных культурах при содержании его свыше 1 мг/л воды и 1 кг почвы отмечалось отрицательное его влияние на томаты.

Йод может поглощаться листьями растений из атмосферы. Он входит в состав свободных аминокислот и соответственно в белки. Вынос его с урожаем около 10 г/га. Среднее содержание в почвах следующее (в %): в черноземах и каштановых - 5,3*0,0004, в лесостепных - 2,6*0,0004, в сероземах - 2,5 10*0,0004, в дерново-подзолистых -2,510*0,0004, в торфянистых - 1,2-10*0,0004, в красноземах - 110*0,004. В течение года йода с осадками попадает в почву от 9 до 50 г/га. Некоторое количество йода вносится в почву с сырыми калийными солями.
Недостаток йода в воде и пище вызывает заболевание щитовидной железы, особенно в горных районах, где меньше содержится йода. С профилактической целью применяют поваренную соль, обогащенную этим элементом.

Определить по внешним признакам недостаток для растения того или иного микроэлемента практически бывает очень трудно. Поэтому в каждом конкретном случае решение о применении микроудобрений для растений станет необходимым в том случае, если точно установлен его недостаток. При этом следует учитывать pH почвы, свойства поглощающего комплекса, влажность почвы, наличие других ионов, выращиваемую культуру и т.д. Следует помнить, что при неправильном применении микроудобрений легко можно превысить порог токсичности, что нанесет урожаю и качеству продукции непоправимый ущерб.

Просмотры: 2273

13.02.2019

По оценкам разных исследователей, для питания растений необходимо от 68 до 84 элементов периодической системы Д. И. Менделеева. Роль далеко не всех их изучена досконально. Тем не менее, общепризнано, что определенная часть найденных в растениях и почве элементов является совершенно необходимой для нормального роста и развития растений, получения хороших урожаев.

Все элементы, участвующие в , принято классифицировать в зависимости от их содержания в растениях и в почве. Обычно их разделяют на макроэлементы и микроэлементы. По этой классификации, элементы, содержание которых в перерасчете на сухое вещество составляет от сотых долей процента до нескольких десятков процентов, являются макроэлементами. Те элементы, содержание не превышает тысячных долей процента, относят к микроэлементам.

В настоящее время эта классификация дополнена. Часть элементов сейчас относят к мезоэлементам, т.е., по сути, они образуют группу, промежуточную между макро- и микроэлементами. Кроме того, иногда выделяют ультрамикроэлементы. Это те элементы, содержание которых в растениях ничтожно мало, а физиологическая роль и влияние практически не изучены.


Если придерживаться уточненной классификации, то к макроэлементам относятся азот, фосфор и калий, к мезоэлементам – сера, кальций, магний, к микроэлементам – , медь, барий, хлор, натрий, титан, серебро, ванадий, никель, селен, литий, йод, алюминий.

Приведенная классификация, как и любая другая, достаточно условна, и те или иные элементы в работах разных авторов порой попадают в разные группы. Кроме того, в тканях некоторых видов растений отдельные микроэлементы содержатся в количествах, характерных для макроэлементов. Тем не менее, для практических целей, т.е. организации минерального питания растений в хозяйственных условиях, эта классификация достаточно удобна и позволяет адекватно оценить роль тех или других элементов в получении урожая, правильно подобрать методы восполнения их недостатка в почве.

Макроэлементы и мезоэлементы необходимы растению в достаточно больших количествах, потому что являются «строительным материалом», в первую очередь, для белков. Микроэлементы входят в состав ферментов, витаминов и т.п. Нормальное развитие и функционирование как отдельных клеток, так и всего растительного организма невозможно без оптимального обеспечения элементами всех этих групп.

Отсутствие или недостаток любого из элементов, необходимых для роста и размножения, вызывает вполне определенные симптомы голодания. Однако, поступая в повышенных дозах, как макро, так и микроэлементы становятся токсичными для растений и употребляющих их людей и животных.

Питательные вещества при корневом питании растения получают из почвы. Основным источником поступления микроэлементов в почву являются материнские почвообразующие породы. При этом почвы очень различаются по содержанию микроэлементов. Так, в моренных лессовидных суглинках содержание кобальта, хрома, стронция в 2 – 2,5 раза больше, а никеля, ванадия, титана, бария, бора, марганца – в 3 – 4 раза больше, чем в песках. Торфяно-болотные почвы бедны микроэлементами. При этом, содержание микроэлементов в почве увеличивается по мере накопления в ней органических веществ. То есть, при внесении навоза, компоста и других органических удобрений, почва обогащается не только макро-, но и микроэлементами.

Растворимость микроэлементов в почвах имеет большое значение для их биологической доступности и способности к перемещению. Тяжелые почвы (как щелочные, так и нейтральные) хорошо удерживают микроэлементы и поэтому медленно поставляют их растениям, что может приводить к нехватке некоторых элементов. Легкие почвы, наоборот, могут быть источником легкодоступных микроэлементов, но при этом их запас быстрее истощается. Поэтому при оценке обеспеченности почв микроэлементами важно учитывать не только их валовое содержание, но и наличие подвижных форм. Причем, разница между этими двумя значениями может быть весьма существенной. Например, бор в подвижной форме составляет лишь 2 – 4% от валового содержания этого микроэлемента, медь, молибден, кобальт, цинк – 10 – 15%.

Обеспеченность почвы микроэлементами меняется в течение вегетационного периода, а также зависит от интенсивности осадков, испарения влаги из почвы и т.д. В зависимости от этих факторов, концентрации микроэлементов в почвенных растворах могут изменяться более чем в 10 раз. Это необходимо учитывать при проведении анализов почвы. При этом концентрации макроэлементов, хотя также зависят от упомянутых факторов, изменяются в меньшей степени.

Перенос растворенных элементов в почве может происходить двумя путями: через почвенный раствор (диффузия) и вместе с движущимся почвенным раствором (вымывание). В зависимости от климата, этот процесс имеет свои особенности. Так, в прохладном влажном климате вымывание микроэлементов вниз по профилю почвы проявляется сильнее, чем их накопление. А в теплом сухом климате более характерно восходящее движение микроэлементов.

Состояние и доступность микроэлементов в почве зависит от ее кислотности. Так, цинк, марганец, медь, железо, кобальт, бор легко выщелачиваются в кислых почвах. Но если pH почвы поднимается выше 7, эти элементы образуют довольно устойчивые соединения. Молибден и селен, наоборот, мобилизуются в щелочных почвах, а в кислых становятся практически нерастворимыми.



Уровень содержания элементов также связан с биологической активностью почв. Низкая концентрация микроэлементов стимулирует увеличение бактерий в почве, а повышенное их содержание оказывает негативное влияние на почвенную микробиоту. Причем, наиболее токсичны микроэлементы для бактерий, фиксирующих свободный азот. В биомассе микроорганизмов микроэлементы могут накапливаться в таких больших концентрациях, что это влияет на уровень их содержания в почве в целом. При этом, связанные микроорганизмами микроэлементы становятся менее доступными для растений. Также менее доступны для растений элементы, фиксированные на оксидах, тогда как адсорбированные на глинистых минералах – наиболее доступные.

В целом, в почвах более половины общего содержания микроэлементов удерживается органическим веществом. Например, на торфяниках у растений нередко проявляются симптомы дефицита цинка, меди, молибдена, марганца. Причина этого – сильное удержание этих элементов нерастворимыми гуминовыми кислотами.

Степень поглощения растениями микроэлементов и интенсивность их роста в значительной степени зависит от наличия в почве макроэлементов – азота, фосфора и калия. Так, повышение уровня азотного питания увеличивает поступление в растения фосфора, калия, кальция, магния, меди, марганца и цинка. Но при избытке азота наблюдается обратная закономерность. Избыточные дозы фосфора снижают поступление в растение меди, железа и марганца. В присутствии фосфатов уменьшается поглощение растениями цинка. Калий может снижать поступление кальция и магния.

Микроэлементы, в свою очередь, влияют на поступление в растения макроэлементов. Так, поступление азота в растения снижается при дефиците железа, марганца и цинка. Положительно влияют на поглощение азота молибден и кобальт. Поглощение растениями фосфора увеличивается при наличии меди, цинка, кальция и молибдена, но уменьшается под влиянием магния и железа. Поступление в растения калия снижается под влиянием меди, марганца, никеля, цинка, молибдена, железа и бора, а возрастает при наличии хлора.

Описанные явления антагонизма и синергизма ионов очень сильно зависят от других факторов – температуры, вида растений, реакции среды, концентрации питательных веществ.

Интенсивность поглощения питательных веществ растениями также сильно зависит от температуры окружающей среды. Оптимальной для этого является температура + 25 - + 30 °С. Если температура поднимается выше + 35 °С либо падает ниже + 10 - + 12 °С, поглощение питательных веществ растениями замедляется, а потом и вовсе приостанавливается до наступления благоприятных условий.

Общеизвестный факт – на одной и той же почве, при одинаковом содержании в ней макро- и микроэлементов растения разных видов чувствуют себя по-разному. Связано это с их неодинаковыми потребностями в элементах питания. Причем, эти потребности различаются даже в те или иные периоды развития одного и того же растения. Например, для питания проростка гораздо важнее резерв микроэлементов в семени, чем их содержание в почве. Но для всех растений и периодов их развития является справедливым правило незаменимости элементов, согласно которому ни один из питательных элементов не может быть заменен другим. Поэтому при недостатке любого макро- или микроэлемента нет смысла пытаться увеличить урожай за счет внесения других элементов. Отсюда же следует, что для успешного восполнения нехватки питательных веществ нужно точно знать, каких именно элементов недостаточно.



Особенно чувствительны к недостатку или избытку питательных элементов молодые растения. В то же время, есть элементы, которые более необходимы растениям именно на первых этапах развития. Например, это относится к фосфору. В фазе активного роста сначала растения больше нуждаются в азоте, но со временем происходит увеличение потребности в калии. В период образования бутонов и цветения особенно важны фосфор и азот, а также бор.

Разные виды сельскохозяйственных культур довольно сильно различаются по чувствительности к дефициту микроэлементов (см. таблицу).







Для практических целей также важным является показатель выноса питательных веществ с урожаем. Относительное содержание элементов минерального питания в основной и побочной продукции разных сельскохозяйственных культур определяется, прежде всего, их видовыми особенностями, а также от сорта и условий выращивания. В частности, капуста, картофель, сахарная свекла, подсолнечник, кормовые корнеплоды для создания более высокого урожая потребляют гораздо больше питательных веществ, чем зерновые. Вынос питательных веществ из почвы возрастает с увеличением урожая. Тем не менее, затраты питательных веществ на единицу продукции при этом уменьшаются.


Все перечисленные особенности следует учитывать, разрабатывая стратегию и текущие планы обеспечения растений в определенном хозяйстве питательными элементами. В то же время, необходимо помнить и о том, что урожай предназначен потребителям. А конечные потребители сельскохозяйственной продукции – люди. И, например, недостаток микроэлементов в плодах растений может отрицательно влиять на здоровье потребителей, как и избыток тех или иных веществ.

Роль микроэлементов в жизни растений

Железо (Fe) – играет ключевую роль в синтезе хлорофилла. Участвует в фиксации атмосферного азота, в восстановлении нитратов до аммиака, в обмене углеводов, белков, ауксинов, серы, в поступлении и передвижении пластических веществ по растению, в росте и делении клеток. Недостаток железа приводит к пожелтению листьев, в дальнейшем растение гибнет.

Медь (Cu) – усиливает образование углеводов, белков, жиров, витамина С. Повышает интенсивность дыхания и фотосинтез, повышает морозо- , засухо- и жароустойчивость, устойчивость к заболеваниям, улучшает образование плодов и семян, усиливает поступление азота и магния. При недостатке меди ухудшается опыление растений, появляется склонность злаковых культур к полеганию.

Цинк (Zn) – увеличивает содержание сахарозы, крахмала и белков, витамина С, активирует фитогормон ИУК (ауксин, гормон роста), усиливает рост корневой системы, повышает водоудерживающую способность, морозо- , засухо- и жароустойчивость. Недостаток цинка наиболее негативно сказывается на образовании семян. Особенно чувствительны к недостатку цинка кукуруза, лен, плодовые.

Марганец (Mn) – участвует в фотосинтезе, активизирует гормон ауксин и ряд ферментов, уменьшает содержание нитратов в продукции, повышает содержание витамина С. Недостаток марганца негативно сказывается на многих процессах обмена веществ, в частности на синтезе углеводов и протеинов. Наиболее требовательные к марганцу культуры – свекла, картофель, зерновые.

Бор (B) – улучшает углеводный и белковый обмен, опыление и оплодотворение цветков, предотвращает появление гнили сердечка у сахарной свёклы и парши у картофеля, усиливает отток продуктов фотосинтеза в клубни, корнеплоды и луковицы. При недостатке бора нарушаются процессы деления клетки и образования генеративных органов. Недостаток бора сильнее всего сказывается на таких культурах как рапс, сахарная свекла, бобовые.

Молибден (Mo) – улучшает азотный обмен и синтез белков, уменьшает содержание нитратов. Необходим в усвоении азота воздуха, в синтезе нуклеиновых кислот. Увеличивает содержание хлорофилла, повышает интенсивность фотосинтеза. Увеличивает содержание углеводов, каротина, аскорбиновой кислоты, белка. Недостаток молибдена приводит к снижению устойчивости растений к различным заболеваниям. Чувствительны к недостатку молибдена бобовые культуры.

Ванадий (V) – повышает содержание хлорофилла, скорость фотосинтеза (при сильном освещении), является катализатором фиксации атмосферного азота

Кобальт (Co) – усиливает азотфиксацию, входит в состав витамина В12, увеличивает содержание хлорофилла и каротиноидов. Участвует в азотном обмене – биосинтезе белка и нуклеиновых кислот. Повышает содержание воды, особенно в засуху.

Хром (Cr) – активирует ряд ферментов, повышает иммунитет и устойчивость к стрессам. При недостатке наблюдается снижение роста и накопления биомассы, пожелтение и опадание листьев.

Селен (Se) – повышает устойчивость к заболеваниям и стрессам (за счёт накопления аминокислоты пролина). При недостатке у растений задерживаются рост и цветение, растения теряют устойчивость к переохлаждениям, становятся чувствительными к гербицидам.

Никель (Ni) – необходим для предотвращения накопления токсических доз мочевины, так как входит в состав разлагающего ее фермента. Стабилизирует рибосомы и усиливает рост.

Литий (Li) – повышает устойчивость к болезням, усиливает фотохимическую активность хлоропластов. Улучшает транспорт калия, усиливает рост корневой системы. Повышает содержание витаминов группы В.

Восполнение слабо доступных для растений микроэлементов средствами листовой подкормки при помощи удобрения содержащего оптимальный набор микроэлементов в физиологически сбалансированном соотношении, являлся основополагающей задачей при разработке удобрения нового поколения - «Аквадон-Микро», которое позволяет обогатить растения микроэлементами при минимальных экономических затратах и повысить урожайность сельскохозяйственных культур.

Бор (B) один из наиболее важных микроэлементов для растений. В клетке большая его часть представлена комплексными соединениями с полисахаридами клеточной стенки. Без бора, прежде всего, нарушаются процессы формирования репродуктивных органов, созревания семян и плодоношения. Исключительно важную функцию выполняет бор в углеводном обмене. Бор способствует лучшему использованию кальция в процессах обмена веществ в растениях. В этой связи применение «Аквадон-Микро» способствует не только увеличению урожайности, но и значительному повышению качества продукции.

Железо (Fe) участвует в функционировании основных элементов электрон-транспортных цепей дыхания и фотосинтеза, в восстановлении молекулярного азота и нитрата до аммиака, катализирует начальные этапы синтеза хлорофилла. Недостаток железа часто имеет место при переувлажнении на карбонатных, а также на плохо дренированных почвах, проявляется в пожелтении листьев (хлороз) и снижении интенсивности окислительно-восстановительных процессов.

Кобальт (Co) необходим высшим растениям для фиксации молекулярного азота бактероидами и концентрируется в клубеньках. Необходим для синтеза витамина В12. Является мощным стимулятором роста.

Магний (Mg) участвует в белковом и углеводном обмене, входит в состав хлорофилла, который при его недостатке разрушается, предотвращает хлороз. Происходит отток хлорофилла по жилкам из старых листьев к молодым. Недостаток магния проявляется в пожелтении участков листа между жилками и в снижении урожайности. Остро востребован культурами с большим выносом калия (сахарная свекла, виноград и др.)

Марганец (Mn) активизирует ферменты в растении, накапливается в листьях и участвует в фотолизе воды, являясь компонентом фотосистемы, способствует накоплению и передвижению сахаров из листьев в корнеплоды, стимулирует нарастание новых тканей в точках роста, улучшает поглощение железа из почвы и предупреждает хлороз. При его недостатке резко снижается выделение кислорода при фотосинтезе и содержание углеводов, особенно в корнях. Чувствительными культурами к недостатку марганца являются свекла сахарная, кормовая и столовая, овес, картофель, яблоня. Поступление марганца в растения снижается при низкой температуре и высокой влажности почвы, что чаще всего наблюдается ранней весной, и от этого в значительной степени страдают озимые.

Медь (Cu) входит в состав ферментов и участвует в окислительно-восстановительных превращениях, около 50% ее содержится в хлоропластах. При дефиците меди нарушается лигнификация клеточных стенок, снижается интенсивность дыхания и фотосинтеза. Признаки медного голодания проявляются чаще всего на
торфянистых и на кислых песчаных почвах. Симптомы заболевания для зерновых культур выражаются в побелении и засыхании кончиков листовой пластинки. При сильном недостатке меди растения начинают усиленно куститься, но в дальнейшем колошение не происходит, и весь стебель постепенно засыхает.
Растения отзывчивые к меди: пшеница, ячмень, овес, лен, кукуруза, морковь, свекла, лук, шпинат, люцерна, белокочанная капуста, картофель.
Медь повышает устойчивость растений против грибковых и бактериальных заболеваний, снижает заболевание зерновых культур различными видами головни, повышает устойчивость растений к бурой пятнистости. Плодовые культуры при недостатке меди заболевают, так называемой, суховершинностью или экзантемой.
Медь в растениях повышает содержание гидрофильных коллоидов, и, поэтому, в сухое и жаркое лето внекорневые подкормки этим элементом очень эффективны.

Молибден (Mo) часто называют микроэлементом азотного обмена, поскольку он входит в состав нитратредуктазы и нитрогеназы. При его недостатке, что часто бывает на кислых почвах, в тканях накапливается большое количество нитратов и нарушается нормальный обмен веществ у растений. Задерживается рост растений, тормозится синтез хлорофилла.

Сера (S). При недостатке серы наблюдается слабый рост растений и преждевременное пожелтение листьев. Больше всех других серу содержат и нуждаются в ней растения семейства крестоцветных, а также бобовые и картофель. При недостатке серы у плодовых культур листья и черешки становятся деревянистыми. В отличие от азотного голодания при серном голодании листья растений не опадают, хотя имеют бледную окраску. Недостаток ее отмечается на разных почвах, особенно на дерново-подзолистых, легких, малогумусных, а также в районах с большим количеством осадков, удаленных от промышленных центров.

Цинк (Zn) входит в состав многих ферментов, участвует в образовании хлорофилла, способствует ситнезу витаминов, поэтому подкормка цинком усиливает рост растений. Цинк играет важную роль в окислительно-восстановительных процессах, протекающих в растительных организмах. При его дефиците нарушается фосфорный обмен: возрастает содержание неорганического фосфата, замедляется его превращение в органические формы, что проявляется на растениях в хлоротичных пятнах на листьях, которые становятся бледно-зелеными, а у некоторых растений почти белыми. Применение «Аквадон-Микро» с содержанием цинка повышает урожай всех полевых, овощных и плодовых культур. При этом отмечается снижение пораженности растений грибковыми заболеваниями, повышается сахаристость плодовых и ягодных культур.

Для успешного культивирования сельскохозяйственных растений очень важна роль сбалансированности минерального питания. Избыток или недостаток какого либо элемента приводит к нарушению поступления других, что вызывает задержку ростовых процессов и снижает урожайность. Так, некоторые макроудобрения, внесенные в больших дозах, влияют на доступность для растений микроэлементов: фосфорные – цинка и меди, азотные – меди и молибдена, калийные – бора и магния. В то же время недостаток в почве микроэлементов снижает эффективность удобрений с макроэлементами.

Наукой доказано, что для нормального развития растительного организма недостаточно применения только минеральных или органических удобрений. Важную роль в питании растений играют микроэлементы. В частности, Cu (медь), Mo (молибден), Mn (марганец), Co (кобальт), Zn (цинк), B (бор) и другие повышают активность многих ферментов и ферментных систем в растительном организме и улучшают использование растениями питательных веществ из почвы и удобрений. Поэтому микроэлементы нельзя заменить другими веществами, а их недостаток обязательно должен быть восполнен. Только тогда мы получим качественную продукцию, содержащую оптимальное количество для данного сорта сахаров, аминокислот, витаминов.

Стройматериалы для построения ферментных систем

Человеку кроме белков, жиров и углеводов для нормальной жизнедеятельности необходимы многочисленные элементы, находящиеся в пище. Так же и растения нуждаются в дополнительной подпитке микроэлемантами.

Микроэлементами называют химические элементы, необходимые для нормальной жизнедеятельности растений и используемые растениями в микроколичествах по сравнению с основными компонентами питания. Однако их биологическая роль велика.

Всем без исключения растениям для построения ферментных систем - биокатализаторов - необходимы микроэлементы, среди которых наибольшее значение имеют железо, марганец, цинк, бор, молибден, кобальт и др. Ряд ученых называют их «элементами жизни», как бы подчеркивая, что при отсутствии указанных элементов жизнь растений и животных становится невозможной. Недостаток микроэлементов в почве не приводит к гибели растений, но является причиной снижения скорости и согласованности протекания процессов, ответственных за развитие организма. В конечном итоге растения не реализуют своих возможностей и дают низкий и не всегда качественный урожай.

Сельскохозяйственные растения по обеспеченности микроэлементами объединяются в следующие группы:

1. Растения невысокого выноса микроэлементов и сравнительно высокой усваивающей способности - зерновые хлеба, кукуруза, зернобобовые, картофель;

2. Растения повышенного выноса микроэлементов с невысокой и средней усваивающей способностью - корнеплоды (сахарная, кормовая, столовая свекла и морковь), овощи, многолетние травы (бобовые и злаковые), подсолнечник;

3. Растения высокого выноса микроэлементов - сельскохозяйственные культуры, выращиваемые в условиях орошения на фоне высоких доз минеральных удобрений.

С литологическими особенностями четвертичных отложений связаны и провинциальные особенности распространения микроэлементов (табл. 1).

Микроэлементы не могут быть заменены другими веществами и их недостаток обязательно должен быть восполнен с учетом формы, в которой они будут находиться в почве. Растения могут использовать микроэлементы только в водорастворимой форме (подвижной форме микроэлемента), а неподвижная форма может быть использована растением после протекания сложных биохимических процессов с участием гуминовых кислот почвы. В большинстве случаев эти процессы протекают очень медленно и при обильном поливе грунта значительная часть образующихся подвижных форм микроэлементов вымывается.

Все микроэлементы жизни, кроме бора, входят в состав тех или иных ферментов. Бор не входит в состав ферментов, а локализуется в субстрате и участвует в перемещении сахаров через мембраны, благодаря образованию углеводноборатного комплекса.

Большинство микроэлементов являются активными катализаторами, ускоряющими целый ряд биохимических реакций. Микроэлементы своими замечательными свойствами в ничтожных количествах способны оказывать сильнейшее действие на ход жизненных процессов и очень напоминают ферменты. Совместное влияние микроэлементов значительно усиливает их каталитические свойства.

В ряде случаев только композиции микроэлементов могут восстановить нормальное развитие растений. Однако сведение роли микроэлементов только к их каталитическому действию неверно.

Микроэлементы оказывают большое влияние на биоколлоиды и влияют на направленность биохимических процессов. Так, марганец регулирует соотношение двух и трехвалентного железа в клетке. Соотношение железо-марганец должно быть больше двух. Медь защищает от разрушения хлорофилл и способствует увеличению дозы азота и фосфора примерно в два раза. Бор и марганец повышают фотосинтез после подмораживания растений.

Неблагоприятное соотношение азота, фосфора, калия может вызвать болезни растений, которые излечиваются микроудобрениями.